期刊文献+

基于Fisher投影和变论域思想的模糊控制器降维方法及其在液位问题的应用 被引量:1

Dimension Reduction of Fuzzy Controller Based on Fisher Projection and Variable Universe Method and Its Application on Water Level Control
原文传递
导出
摘要 维数问题是模糊控制器领域的一个重要问题。本文结合Fisher降维、ANFIS模糊神经网络和变论域控制思想,论述了一种可以减少输入个数的、高精度的模糊控制器的构造方法。以液位控制实验为例,对原有的控制器进行了降维,发现这种方法可以极大地减少了控制器的计算量,同时提高控制器控制品质,具有较高的推广价值。 Dimension explosion problem is a hot issue in fuzzy control. This paper proposes a method to reduce the number of input variables of a fuzzy controller based on Fisher Projection method, Artificial Network Fuzzy Inference System and Variable Universe Control Method. The experiment in the problem of water level control shows that this method can greatly improve both the compute efficiency, and the control quality. It can be applied to similar control problems.
出处 《模糊系统与数学》 CSCD 北大核心 2012年第5期154-160,共7页 Fuzzy Systems and Mathematics
基金 陕西省科技厅重点国际科技合作项目(2011KW-27) 福建省高校服务海西建设重点项目(A103) 陕西省教育厅科学研究计划项目(2011JK0636) 泉州师范学院"管理科学与工程硕士学位授予单位"建设项目
关键词 模糊控制 液位控制 降维 Fisher投影 变论域模糊控制器 Fuzzy Control Tank Problem Dimension Reduction Fisher Projection Variable UniverseBased Fuzzy Controller
  • 相关文献

参考文献9

二级参考文献34

共引文献370

同被引文献13

  • 1Dornaika F, Assoum A. Enhanced and parameterless lo- cality preserving projections for face recognition[J-~. Neu- roeomputing, 2013,99 : 448-457.
  • 2Borg I, Groenen P. Modern multidimensional scaling: theory and applications[M]. NewYork : Springer-Verlag, 2005 : 3-13.
  • 3Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher diseriminant analysis]-J~. Journal of Ma- chine Learning Research,2007,8(1):1027-1061.
  • 4Sugiyama M. Semi-supervised local Fisher discriminant a-nalysis for dimensionality reduction[J]. Machine Learn- ing,2010,78(1/2) ~35-61.
  • 5Li W,Ruan Q Q,Wan J. Dimensionality reduction using graph-embedded probability-based semi-supervised dis- eriminant analysis E J 1. Neuroeomputing, 2014, 138: 283-296.
  • 6Song X N,Liu Z,Yang X B,et al. A fuzzy supervised learn- ing method with dynamical parameter estimation for nonlin- ear discriminant analysis [J]. Computers and Mathematics with Applications, 2013,66(10) .. 1782-1794.
  • 7Zhao C R, Lai Z H, Liu C C, et al. Fuzzy local maximal margin embedding for feature extraction[J]. Soft Corn- put,2012,16(1) :77-87.
  • 8An W J, Liang M G. Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises f-J~. Neurocomputing, 2013, 110: 101-110.
  • 9Wu Kuolung, Yu Jian, Yang Miinshen. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests [J]. Pattern Recognition Letters, 2005, 26(4) ,639-652.
  • 10ChapeIle O,Seholkopf B, Zien A. Semi-supervised [earn- ingI-M~. Cambridege~ MIT Press, 2010 : 377-393.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部