期刊文献+

非理想信道信息下双向多中继选择系统性能分析 被引量:4

Performance Analysis of Two-way Multiple Relay Selection Systems under Imperfect CSI
下载PDF
导出
摘要 该文在双向多中继选择系统中,分析了采用自适应调制的基于三时隙时分广播(TDBC)中继传输协议的系统性能,给出了存在信道估计误差时,系统的端到端信干噪比表达式,然后通过不等式缩放将表达式转化为多个服从指数分布变量和的形式,求出了其上界的分布,并利用该分布推导出了系统平均频谱效率的上界闭式表达式。通过仿真可以看出,理论分析结果与蒙特卡洛仿真结果相吻合,随着信道估计误差的增加,系统的平均频谱效率降低,并会由于自干扰不能完全被消除而出现平台。为了降低信道估计误差对系统性能的影响,该文进一步提出了一种中继端最优的功率分配策略。 Performance is analyzed of the multiple two-way relaying systems with three-slot Time Division BroadCast (TDBC) protocol employing adaptive modulation. The end-to-end SINR of the system is presented when channel estimation error exists. Then the distribution of its upper bound is given by transforming the expression to sum of multiple variables which obey exponential distribution through inequality zooming. Upper bound of the close-form expression of average spectrum efficiency is derived employing the distribution. Simulations show that the theoretical analysis matches well with the Monte Carlo results. The average spectrum efficiency decreases when the channel estimation error increases. Error floor will emerge for the self-interference can not be totally eliminated. What's more, the optimal power allocation strategy at relay to reduce the impact of channel estimation error is proposed.
作者 史寅科 邱玲
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第10期2293-2298,共6页 Journal of Electronics & Information Technology
基金 国家科技重大专项(2010ZX03002-003-001)资助课题
关键词 无线通信 双向中继 时分广播 自适应调制 信道估计误差 Wireless communication Two-way relaying Time division broadcast Adaptive modulation Channelestimation error
  • 相关文献

参考文献11

  • 1Ju M C and Kim Il-Min. Relay selection with ANC and TDBC protocols in bidirectional relay networks [J]. IEEE Transactions on Communications, 2010, 58(12): 3500-3511.
  • 2Ding H, Ge J, Costa B, et al.. Two birds with one stone: exploiting direct links for multiuser two-way relaying systems [J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 54-59.
  • 3Hwang K, Ko Y, and Alouini M S. Performance bounds for two-way amplify-and-forward relaying based on relay path selection [C]. Proc. IEEE Vehicular Technology Conference, Barcelona, Spain, Spring, 2009: 1-5.
  • 4Hwang K, Ko Y, and Alouini M S. Performance analysis of two-way amplify and forward relaying with adaptive modulation over multiple relay network[J]. IEEE Transactions on Communications, 2011, 59(2): 402-406.
  • 5Kim N and Hyuncheol P. Performance analysis of MIMO system with linear MMSE receiver [J]. IEEE Transactions on Wireless Communications, 2008, 7(11): 4474-4478.
  • 6Goldsmith A J and Chua Soon-ghee. Variable-rate variable- power MQAM for fading channels[J]. IEEE Transactions on Communications, 1997, 45(10): 1218-1230.
  • 7Nechiporenko T, Phan K T, Tellambura C, et al.. Performance analysis of adaptive M-QAM for rayleigh fading cooperative systems[C]. Proc. IEEE International Conference on Communications, Beijing, China, May 2008: 3393-3399.
  • 8Alouini M S and Goldsmith A J. Adaptive modulation over nakagami fading channels[J]. Wireless Personal Communications, 2000, 13(1): 119-143.
  • 9Yi Z, Ju M, and Kim Il-Min. Outage probability and optimum combining for time division broadcast protocol[J]. IEEE Transactions on Wireless Communications, 2011, 10(5) 1362-1367.
  • 10Yi Z, Ju M, and Kim Il-Min. Outage probability and optimum power allocation for analog network coding[J]. IEEE Transactions on Wireless Communications, 2011, 10(2) 407-412.

同被引文献40

  • 1Sahai A, Patel G, and Sabharwal A. Pushing the limits of full-duplex: design and real-time implementation[R]. The Computing Research Repository (CoRR), 2011.
  • 2L6pez-Valcarce R, Antonio-Rodrfguez E, Mosquera C, et al.. An adaptive feedback canceller for full-duplex relays based on spectrum shaping[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(8): 1566-1577.
  • 3Choi J I, Jain M, Srinivasan K, et al.. Achieving single channel, full duplex wireless communication[C]. 16th Annual International Conference on Mobile Computing and Networking (MobiCom'10), New York, USA, 2010: 1-12.
  • 4Khojastepour M A, Sundaresan K, Rangarajan S, et al.. The case for antenna cancellation for scalable full-duplex wireless communications[C]. 10th ACM Workshop on Hot Topics in Networks (HOTNETS'11), Massachusetts, USA, 2011: DOI:10.1145/2070562.2070579.
  • 5Jain M, Choi J I, Kim T M, et al.. Practical, real-time, full duplex wireless [C]. 17th Annual International Conference on Mobile Computing and Networking (MobiCom'11), New York, USA, 2011, DOI:10.1145/2070562.2070579.
  • 6Hong S, Mehlman J, and Katti S. Picasso: flexible RF and spectrum slicing[C]. ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Helsinki, Finland, 2012: 37-48.
  • 7Knox M E. Single antenna full duplex dommunications using a dommon darrier[C]. 2012 IEEE 13th Annual Wireless and Microwave Technology Conference (WAMICON), Florida, USA, 2012: 1-6.
  • 8Lee Y J, Lee J B, Sung I P T-DMB repeaters based et al.. Feedback cancellation for on frequency-domain channelestimation[J]. IEEE Transactions on Broadcasting, 2011, 57(1): 114-120.
  • 9Liu Y, Xia X G, and Zhang H L. Distributed space-time coding for full-duplex asynchronous cooperative comnmnications[J]. IEEE Transactions on Wireless Communications, 2012, 11(7): 2680-2688.
  • 10Chang D. Apparatus and method for removing self-interference and relay system for the same[P]. US8224242B2, 2012.

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部