期刊文献+

一种基于最优观测矩阵的自适应贝叶斯压缩信道感知联合机制 被引量:6

A Joint Mechanism of Adaptive Bayesian Compressed Channel Sensing Based on Optimized Measurement Matrix
下载PDF
导出
摘要 该文采用基于概率模型的贝叶斯压缩感知方法,从最大后验概率角度,给出了压缩信道感知的一般流程。在此基础上,利用自适应贝叶斯压缩感知将信号的重构和观测矩阵的设计结合,使这两个环节不再相互独立。同时,提出一种基于最优观测矩阵的自适应贝叶斯压缩感知联合机制,通过减少观测矩阵的相关度以及对观测矩阵的自适应设计,使得信道的重构效果更佳。另外可利用重构过程中得到的差错栏,对重构精确度进行衡量。仿真表明:在相同的实验条件下,该联合机制相比传统的重构算法,具有更好的抗噪声能力和重构精度。 In this paper, a common process of compressed channel estimation is given by the Bayesian Compressed Sensing (BCS) which is based on the probability principle of Maximum A Posteriori (MAP). In the process, signal reconstruction and measurement matrix design as two separate steps can be combined together by Adaptive BCS (ABCS). Meanwhile a joint mechanism of ABCS and optimized measurement is proposed by reducing the coherence and the adaptive design of measurement matrix to get a better reconstruction performance. Furthermore the error bars obtained in the process of reconstruction can be used to measure the accuracy of the reconstruction. Simulation results show that under the same conditions, the joint mechanism shows better anti-noise ability and recovery accuracy than those of the traditional reconstruction algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第10期2299-2305,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60972039) 江苏省自然科学基金重点项目(BK2010077)资助课题
关键词 无线通信 自适应贝叶斯 最优观测矩阵 压缩信道估计 相关度 联合机制 Wireless communication Adaptive Bayesian Compressed Sensing (ABCS) Optimized measurementmatrix Compressed channel estimation Coherence Joint mechanism
  • 相关文献

参考文献14

  • 1Haupt J and Bajwa W U. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.
  • 2裴敏艳,成文婧,魏急波.基于正交训练序列的MIMO系统联合最大似然时频同步和信道估计[J].电子与信息学报,2010,32(3):633-637. 被引量:4
  • 3Bajwa W U, Sayeed A M, and Nowak R. Sparse multipath channels: modeling and estimation[C]. IEEE Digital Signal Processing Workshop, Marco Island, FL, 2009, 1: 1-6.
  • 4甘伟,许录平,苏哲,张华.基于贝叶斯假设检验的压缩感知重构[J].电子与信息学报,2011,33(11):2640-2646. 被引量:17
  • 5Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(6): 211-244.
  • 6Ji Shi-hao, Xue Ya, and Carin L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356.
  • 7Hong S. Direct spectrum sensing from compressed measurements[C]. IEEE Military Communications Conference, San Jose, CA, 2010: 1187-1192.
  • 8Figueiredo M. Adaptive sparseness using Jeffreys prior[C]. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2001: 697-704.
  • 9Cover T M and Thomas J A. Elements of Information Theory[M]. New York: Wiley, 1991: 243-244.
  • 10Candes E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2006, 346(9-10): 589-592.

二级参考文献32

  • 1Proakis J G. Digital Communication. Fourth Edition, New York: McGraw-Hill, 2006, Chapter 6.
  • 2Tarokh V, Naguib A, Seshadri N, and Calderbank A. Space-time codes for high data rate wireless communications: Performance criteria in the presence of channel estimation errors, mobility and multiple paths. IEEE Transactions on Communication, 1999, 47(2): 199-207.
  • 3Besson O and Stoica P. On parameter estimation of MIMO fiat-fading channels with frequency offsets. IEEE Transactions on Signal Processing, 2003, 51(3): 602-613.
  • 4Simoens F and Moeneclaey M. Computationally efficient frequency offset estimation for flat-fading MIMO channels: performance analysis and training sequence design. IEEE Communications Society Globecom 2004, Dallas, Texas USA, 29 Nov.-3 Dec. 2004, Vol 4: 2460-2464.
  • 5Salari S, Ardebilipour M, and Ahmadian M. Frequency offset synchronization and channel estimation for MIMO-OFDM systems. The 9th International Conference on Advanced Communication Technology, Phoenix Park, Korea, 12-14 Feb 2007, Vol 3: 1474-1478.
  • 6Saemi A, Meghdadi V, Cances J P, Zahabi M R, and Dumas J M. ML MIMO-OFDM time synchronization/channel estimation for unknown frequency selective fading channels. 48th International Symposium ELMAR-2006, Zadar, Croatia, 07-09 June 2006: 255-258.
  • 7Saemi A, Meghdadi V, Cances J P, and Zahabi M R. Joint ML time-frequency synchronization and channel estimation algorithm for MIMO-OFDM systems. IET Circuits Devices Systems, 2008, 2(1): 103-111.
  • 8Lee K and Chun J. Frequency-offset estimation for MIMO and OFDM systems using orthogonal training sequences. IEEE Transactions on Vehicular Technology, 2007, 56(1): 146-156.
  • 9Ghogho M and Swami A. Training design for multipath channel and frequency-offset estimation in MIMO systems. IEEE Transactions on Signal Processing, 2006, 54(10): 3957-3965.
  • 10W.U.Bajwa,A.M.Sayeed,R.Nowak.Sparse multipath channels:Modeling and estimation,[J].IEEE Digital Signal Processing Workshop,2009,1:1 - 6.

共引文献30

同被引文献61

  • 1何岩,王东辉,朱淼良.贝叶斯压缩感知稀疏信号重构方法研究[J].华中科技大学学报(自然科学版),2011,39(S2):172-175. 被引量:4
  • 2李元杰,杨绿溪,何振亚.基于训练序列的MIMO信道估计[J].通信学报,2006,27(5):1-5. 被引量:8
  • 3TAUBOCK G, HLAWATSCH F, EIWEN D, et al. Compressive es- timation of doubly selective channels in multicarrier system: leakage effects and sparsity-enhancing processing[ J]. IEEE Joumal of Se- lected Topics in Signal Processing, 2010, 4(2):255 -271.
  • 4HE X Y, SONG R F, ZHU W P. Optimal pilot pattern design for compressed sensing-based sparse channel estimation in OFDM sys- tems [J]. Circuits, Systems and Signal Processing, 2012, 31(4): 1379 - 1395.
  • 5SHARP M, SCAGLIONE A. A useful performance metric for com- pressed channel sensing[ J]. IEEE Transactions on Signal Preeess- ing, 2011,59(6) : 2982 - 2988.
  • 6DO T T, GAN L, NGUGEN N H. Sparsity adaptive matching pur- suit algorithm for practical compressed sensing[ C]// Preeeedings of the 42nd Asilomar Conference on Signals Systems and Computers. Piscataway: IEEE, 2008:581 - 587.
  • 7甘伟,许录平,罗楠,等.一种自适应压缩感知重构算法[J].系统工程及电子技术,2011,33(9):1948-1953.
  • 8XIA P F, ZHOU S L, GIANNAKIS G B. Achieving the Welch bound with difference sets[ J]. IEEE Transactions on Information Theory, 2005, 51(5) : 1900 - 1907.
  • 9CHEN Y S. Semiblind Channel Estimation for MIMO Single Carrier with Frequency-domain Equalization Sys- tems [ J ]. IEEE Transactions on Vehicular Technology, 2010,59(1) :53 -62.
  • 10BAJWA W U, HAUPT J, SAYEED A M, et al. Com- pressed Channel Sensing:A New Approach to Estimating Sparse Muhipath Channels [ J]. Proceedings of the IEEE, 2010,98(6) :1058 - 1076.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部