期刊文献+

综合去取向和广义体散射的三分量极化目标分解模型 被引量:3

Three-component Model-based Decomposition Integrating De-orientation and Generalized Volume Scattering Model
下载PDF
导出
摘要 该文深入分析了Freeman分解中存在的体散射过度估计问题,并发展了一种综合去取向理论和广义体散射模型的三分量极化目标分解模型解决该问题。首先,在分解前对极化协方差矩阵进行去取向处理以削弱交叉极化分量;然后采用一种广义体散射模型以适应林地中HH分量和VV分量的比值变化;最后,增加功率限制处理以完全消除负功率问题。实验采用德国Oberpfaffenhofen地区L波段机载ESAR数据进行验证,并与其他改进模型进行比较,结果表明,综合处理后的分解模型能显著地解决体散射过度估计问题,且分解结果更接近地物的实际散射机理。 In this paper, the issue of volume scattering overestimation as all known existing in Freeman decomposition is analyzed in detail, and a three-component decomposition model based on de-orientation and a generalized volume scattering model is presented to reduce the overestimation of volume power. Firstly, de-orientation is applied to the covariance matrix to reduce the volume scattering power before it is decomposed into three scattering components. Secondly, a generalized volume scattering model is adopted by considering the change of HH and VV ratio in different forest areas. In addition, power constrain method is added to eliminate negative power completely. The results are validated by using the L band ESAR data in Oberpfaffenhofen area in Germany and comparing with many other methods. The results show that the integrated model can solve the volume scattering overestimation more notable than other decomposition model, and the results are closer to real scattering type.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第10期2451-2457,共7页 Journal of Electronics & Information Technology
基金 武汉市学科带头人计划项目(201271130443)资助课题
关键词 SAR图像处理 Freeman分解 去取向 广义体散射模型 体散射过度估计 SAR image processing Freeman decomposition De-orientation Generalized volume scattering model Volume scattering overestimation
  • 相关文献

参考文献16

  • 1Cloude S R and Pottier E. A review of target dccompositon theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
  • 2Trudel M, Magagi R, and Granberg H B. Application of target decomposition theorems over snow-covered forested areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 508-512.
  • 3Ballester-Berman J D and Lopez-Sanchez J M. Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry[J]. IEEE Transactions on Geoscienee and Remote Sensing, 2010, 48(1): 466-479.
  • 4李廷伟,黄海风,梁甸农,朱炬波.基于Freeman分解的植被参数反演新方法[J].电子与信息学报,2011,33(4):781-786. 被引量:6
  • 5Freeman A and Durden S L. A three-component scattering model for polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963 -973.
  • 6Sato A, Yamaguchi Y, Singh G, et al.. Four-component scattering power decomposition with extended volume scattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 166-170.
  • 7Xu Feng and Jin Ya-qiu. Deorientation theory of polarimetric scattering targets and application to terrain surface classificaton[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10): 2351-2364.
  • 8An Wen-tao, Xie Chun-hua, Yuan Xin-zhe, et al.. Four- component decomposition of polarimetric SAR images with deorientation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1090-1094.
  • 9Lee J S and Thomas L. The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 53-64.
  • 10Yamaguchi Y, Moriyama T, Ishido M, et al.. Four-component scattering model for polarimetric SAR image decomposition [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706.

二级参考文献11

  • 1Desnos Y L. POL-INSAR Achievements and Plans[R]. Pol-InSAR, Frascati, Italy, 26-31 Jan., 2009: 1-27.
  • 2Cloude S R and Papathanassiou K P. Three-stage inversion process for polarimetric SAR interferometry [J]. IEE Proceedings Radar, Sonar & Navigation, 2003, 150(3): 125-134.
  • 3Mercer B, Zhang Qing, and Schwaebisch M. et al.. Forest height and ground topography at L-band from an experimental single-pass airborne Pol-InSAR system[R]. Pol-InSAR: Frascati, Italy, 26-31 Jan., 2009: 28-54.
  • 4Mette T, Kugler F, and Papathanassiou K P, et al.. Forest and the random volume over ground nature and effect of 3 possible error types[C]. EuSAR, Dresden, Germany, 16-18 May, 2006: 158-163.
  • 5Tan Lu-lu and Yang Ru-liang. Investigation on tree height retrieval with polarimetric SAR interferometry[C]. IGARSS, Boston, Massachusetts, USA, 6-11 July., 2008: 546-549.
  • 6Xiong Tao, Zhou Guang-yi, Yang Jian, et al.. Volume coherence estimation for random forest height retrieval based on POL-In SAR data[C]. IGARSS, Boston, USA, 6-11 July., 2008: 217-220.
  • 7Freeman A and Durden S L. A three-component scattering model for polaimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
  • 8Yamaguchi Y, Moriyama T Four-component scattering Ishido M. and Yamada H model for polarimetric SAR image decomposition [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706.
  • 9Neumann M, Ferro-Familnd L, and Reigber A. Improvement of forest parameter retrieval from polarimetric SAR interferometry using a simple polarimetric scattering model[R]. Pol-InSAR: Frascati, Italy, 26-31 Jan., 2009: 240-249.
  • 10袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学技术出版社,2002.96.

共引文献5

同被引文献36

  • 1徐丰,金亚秋.目标散射的去取向理论和应用(一)去取向理论[J].电波科学学报,2006,21(1):6-15. 被引量:7
  • 2Chen Q, Kuang G Y, Li Jonathan, et al. Unsupervised Land Cover/Land Use Classification Using PolSAR Im- agery Based on Scattering Similarity [ J ]. IEEE Transac- tions on Geoscience and Remote Sensing, 2013, 51 (3) : 1817-1825.
  • 3Stefan U, Serkan K. Integrating Color Features in Polari- metric SAR Image Classification [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (4): 2197-2216.
  • 4Lee J S, Mitchell R G. Classification of multi-look polari- metric SAR imagery based on complex Wishart distribution [J]. Int. J. Remote Sensing, 1994, 15(11): 2299-2311.
  • 5Bellagente M, Gamba P, Savazzi P. Fuzzy texture char- acterization of urban environment by SAR data [ C ]// IEEE Geoscience Remote Sensing Symposium, Hamburg, 1999, 2: 1232-1234.
  • 6Cloude S R, Pottier E. An entropy based classification scheme for land application of polarimetric SAR [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
  • 7Freeman A, Durden S L. A Three-Component Scattering Model for Polarimetric SAR Data[ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3) : 963-973.
  • 8Lee J S, Grunes M R, Pottier E, et al. Unsupervised Terrain Classification Preserving Potarimetric Scattering Characteristics [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 4( 12): 722-731.
  • 9An W T, Cui Y, Yang J. Three-component model-based decomposition for polarimetric SAR data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (6) : 2732-2739.
  • 10Yamaguchi Y, Sato A, Boerner W M, et al. Four-Com- ponent Scattering Power Decomposition With Rotation of Coherency Matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(6) : 2251-2258.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部