摘要
该文对半无限凸规划(P)提出了一个对偶问题(D1),证明(D1)与(P)无对偶间隙当且仅当Lagrange对偶问题(D)与(P)之间无对偶间隙,作者还利用方向导数给出一个新的刻划鞍点准则的方法.
This paper proposes a dual problem (D1) for a semi-infinite convex programming problem (P). It is proved that a sufficient and necessary condition of no dual gap between (D1) and (P) is no dual gap between (P) and Lagrange's dual problem(D) of (P).The saddle point criterion of (P) is a characterized by using the directional derivative.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2000年第1期1-5,共5页
Acta Mathematica Scientia
基金
国家自然科学基金!19271053
关键词
半无限规划
对偶问题
对偶间隙
方向导数
次微分
Semi-infinite programming, Dual problem, Dual gap, Directional derivative,Subdifferential