期刊文献+

改进的结构系统可靠度的条件边缘乘积法 被引量:2

AN IMPROVED PRODUCT OF CONDITIONAL MARGINAL METHOD FOR STRUCTURAL SYSTEM RELIABILITY ANALYSIS
原文传递
导出
摘要 分析了结构系统可靠度计算与多维正态积分之间的转化关系,以及原有的用于多维正态积分计算的条件边缘乘积法的不足之处,从条件正态分位数计算和相关系数矩阵修正两方面给出改进措施,形成一种改进的条件边缘乘积法。该方法采用数值积分方法进行二维正态分布函数的计算,提高原有方法中条件正态分位数计算的精度,并在此基础上对各相关系数矩阵进行修正,从而有效提高了原有方法在串联系统可靠度计算中的精度。同时,将这一改进方法与单失效模式下的结构可靠度显式迭代算法相结合,提出从单元到系统的结构系统可靠度分析流程。数值算例表明了这一改进方法的有效性和实用性。 The relationship between structural-system reliability evaluation and multi-normal integrals is analyzed,and the deficiency of the original Product of a Conditional Marginal(PCM) method for multi-normal integrals is pointed out.An improved PCM method adopting new measures for the calculations of conditional normal fractile and coefficient matrices is presented.The improved method firstly takes a numerical integration approach for the solution of bivariate normal distribution problems,which improves precisions of the fractile.Then,it updates the corresponding coefficient matrices,based on the precise fractile.It thus efficiently overcomes the inaccuracy of the original PCM method especially being used for the reliability evaluation of a series system.It also presents the details on how to implement the improved PCM method together with the explicit iteration algorithm,which is very efficient for element reliability evaluations.The availability and practicability of this improved PCM method is illustrated through two examples finally.
出处 《工程力学》 EI CSCD 北大核心 2012年第10期321-326,共6页 Engineering Mechanics
基金 国防基础科研项目(D0920060310) 国防技术基础项目(Z092009B001)
关键词 结构系统可靠度 条件概率 多维正态积分 条件边缘乘积法 条件正态分位数 structural system reliability conditional probability multi-normal integrals product of conditional marginal method conditional normal fractile
  • 相关文献

参考文献10

  • 1Hohenbichler M, Rackwitz R. First-order concepts in system reliability [J]. Structural Safety, 1983, 1(3): 177--188.
  • 2Tang L K, Melchers R E. Improved approximation for multinormal integral [J]. Structural Safety, 1987, 4:81-- 93.
  • 3Ditlevsen O, Madsen H O. Structural reliability methods [M]. West Sussex, England: John Wiley & Sons Ltd., 1996: 287--291.
  • 4Melchers R E. Structural reliability: analysis and prediction [M]. Chichester, UK: John Wiley & Sons Ltd., 1999: 189--205.
  • 5Pandey M D. An effective approximation to evaluate multinormal integrals [J]. Structural Safety, 1998, 20: 51 --67.
  • 6Pandey M D, Sarkar A. Comparsion of a simple approximation for multinormal integration with importance sampling-based simulation method [J]. Probabilistic Engineering Mechanics, 2002, 17: 215-- 218.
  • 7Mori Y, Kato T. Multinormal integrals by importance sampling for series system reliability [J]. Structural Safety, 2003, 25: 363--378.
  • 8Yuan X X, Pandey M D. Analysis of approximation for multinormal integration in system reliability computation [J]. Structural Safety, 2006, 28:361--377.
  • 9Kotz S, Balokrishnan N, Johson N L. Continuous multivariate distribution Vol.l: Models and application [M]. Wiley: John Wiley & Sons Ltd., 2000:251 --259.
  • 10钱云鹏,何恩山,陈凤熹,李良巧.结构可靠度的显式迭代算法[J].机械工程学报,2007,43(2):60-63. 被引量:9

二级参考文献5

共引文献8

同被引文献16

  • 1金伟良.结构可靠度数值模拟的新方法[J].建筑结构学报,1996,17(3):63-72. 被引量:23
  • 2KIM D S, OK S Y, SONG J, et al. System reliability analysis using dominant failure modes identified by selective searching technique[ J~. Reliability Engineering & System Safety, 2013, 119:316-331.
  • 3LEE Y J, SONG J. Finite-element-based system reliability analysis of fatigue-induced sequential failures [ J ]. Reliability Engineering & System Safety, 2012, 108:131-141.
  • 4PANDEY M D, SARKAR A. Comparsion of a simple approximation for multinormal integration with importance sampling- based simulation method[ J~. Probabilistic Engineering Mechanics, 2002,17: 215-218.
  • 5YUAN X X, PANDEY M D. Analysis of approximations for muhinormal integration in system reliability computation [ J ]. Structural Safety, 2006,28 (4) : 361-377.
  • 6NADARAJAH S. On the approximations for multinormal integration [ J ]. Computers & Industrial Engineering, 2008, 54 ( 3 ) : 705-708.
  • 7ZHAO Y G, LIN Y S, ANG A H S. Dimension reduction integration for system reliability [ C ]// KATAFYGIOTIS L S, ZHANG L, TANG W H, et al. Proceedings of the Asian-Pacific Symposium on Structural Reliability and its Applica- tions. Hong Kong : The Hong Kong University of Science and Technology, 2008 : 310-315.
  • 8MORI Y, KATO T. Muhinormal integrals by importance sampling for series system reliability [ J ]. Structural Safety, 2003, 25 : 363-378.
  • 9PATELLI E, PRADLWARTER H J, SCHUELLER G I. On multinormal integrals by importance sampling for parallel sys- tem reliability[J]. Structural Safety, 2011,33( 1 ) :1-7.
  • 10KIM S H, NA S W. Response surface method using projected vector sampling points[J]. Structural Safety, 1997, 19( 1 ) : 3-19.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部