摘要
基于Lax对非线性化方法,我们以KdV方程为例给出了一个构造孤子方程的有限带势解的方法.通过Lax对非线性化KdV方程被分解成两个有限维可积系统,进而找到这些有限维可积系统公共的角-作用坐标,最终我们获得了KdV方程的有限带势解.
Based on the method of the nonlinearization of Lax pair, a method to seek the finite-band solution of solton equation is presented. We take KdV equation as an example. First through the nonlinearization of Lax pair, we decompose the KdV equation into two finite-dimensional integrable systems; then we give a common angle-action variables for these two Hamiltonian systems. Fanilly we obtain the finite-band solution of KdV equation.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1998年第2期228-234,共7页
Acta Mathematica Scientia
基金
国家教委高校博士点基金
关键词
Lax对非线性化
有限带势解
KDV方程
孤子方程
Soliton, Nonlinearization of Lax pair, Finite-band solution, Hyperellptical curve