摘要
把微分方程数值积分的 Runge- Kutta方法引入非均匀调制随机激励下的演变随机响应计算问题中来 ,使复杂的演变随机响应问题得到简便的解决 .通过计算实例 ,并同复模态分析方法比较 ,说明了该方法的有效性和精确性 .该方法不需要进行复杂、费时的复特征值运算 ,只需要直接数值积分 ,具有公式简单 ,编程容易 ,计算速度快等优点 ,特别适合于工程实际问题的计算 .
Runge Kutta integration method was used in the solution of the evolutionary random responses of nonuniformly modulated random excitation,which makes the solution of the problem simpler. Compared with complex modal analysis method, by the method only numerical integration computation is done, complicated complex eigenvalue computation may not be required being done. The computation formulae of this method is simple, the programming is also easy, and computation speed is high. The effectiveness and accuracy of it are illustrated by some examples.
出处
《西安石油学院学报(自然科学版)》
CAS
2000年第4期73-75,共3页
Journal of Xi'an Petroleum Institute(Natural Science Edition)
基金
国家自然科学基金! (编号 1 96 72 0 49)资助
关键词
随机振动
演变随机激励
数值解法
工程振动
random vibration, evolutionary random excitation,nonstationary random response, response evolution spectrum, Runge Kutta integration method