期刊文献+

一种上下文移动用户偏好自适应学习方法 被引量:11

Adaptive Learning Approach of Contextual Mobile User Preferences
下载PDF
导出
摘要 针对移动网络对个性化移动网络服务系统的性能提出了更高的要求,但现有研究难以自适应地修改上下文移动用户偏好以为移动用户提供实时、准确的个性化移动网络服务的问题,提出了一种上下文移动用户偏好自适应学习方法,在保证精确度的基础上缩短了学习的响应时间.首先,通过分析移动用户行为日志来判断移动用户行为是否受上下文影响,并在此基础上判断移动用户行为是否发生变化.然后,根据判断结果对上下文移动用户偏好进行修正.在对发生变化的上下文移动用户偏好进行学习时,将上下文引入到最小二乘支持向量机中,进一步提出了基于上下文最小二乘支持向量机(C-LSSVM)的上下文移动用户偏好学习方法.最后,实验结果表明,当综合考虑精确度和响应时间两方面因素时,所提出的方法优于其他学习方法,并且可应用于个性化移动网络服务系统中. A mobile network has higher demands for the performance of personalized mobile network services,but existing researches have been unable to modify the contextual mobile user preferences adaptively and provide real-time,accurate personalized mobile network services for mobile users.This paper proposes a context computing-based approach to mobile user preferences adaptive learning,which can ensure the accuracy and the response time.First,through analyzing the logs of contextual mobile user behaviors,the method judges whether mobile user behaviors are affected by context or not,and detects whether the contextual mobile user behaviors change.According to these judgments,the contextual mobile user preferences are modified.Secondly,the context is introduced into the least squares support vector machine(LSSVM),which is employed to learn the changed contextual mobile user preferences.Further,a learning method of contextual mobile user preferences is proposed which is based on context of the least squares support vector machine(C-LSSVM).Finally,the experimental results show that the proposed method is superior to other learning methods when considering both accuracy and response time.The proposed method in this paper can be applied in the system of personalized mobile network services.
出处 《软件学报》 EI CSCD 北大核心 2012年第10期2533-2549,共17页 Journal of Software
基金 国家自然科学基金(60872051) 中央高校基础研究基金(2009RC0203) 北京市教育委员会共建项目专项资助
关键词 移动网络 偏好学习 上下文移动用户偏好 上下文最小二乘支持向量机 mobile network preference learning contextual mobile user preferences C-LSSVM
  • 相关文献

参考文献3

二级参考文献43

  • 1Eirinaki M, Vazirgiannis M. Web mining for web personaliza-tion[ J ]. ACM Transactions on Intemet Technology, 2003, 3 (1):1 -27.
  • 2Kim D H, Im ll,Adam N, Afluri V, Bieber M, Yesha Y.A clickstream-based collaborative filtering personalization model: towards a better performance [ A ]. Proceedings of the Interna-tional Workshop on Web Information and Data Management [ C]. Washington:Association for Computing Machinery,2004. 88 -95.
  • 3Mobasher B,DAI H H, LUO T, Nakagawa M. Effective per-sonalizafion based on association rule discovery from web usage data[ A]. Proceedings of the Third International Workshop on Web Information and Data Management ( WIDM ) [ C ]. Atlanta .. Association for Computing Machinery, 2001.9 -15.
  • 4LI Yue-feng,ZHONG Ning. Mining ontology for automatically acquiring web user information needs[ J].IEEE Transactions on Knowledge and Data Engineering. 2006,18(4) :554 -568.
  • 5HUANG H, Wang R J. Acquiring user information needs for personalized search [ A ]. International Conference on Informa-tion Acquisition, ICIA 21307[ C]. Jeju: IEEE Computer Society, 2007.177 -181.
  • 6Maslow AH. Motivation and Personality[ M]. New York: Addi-son Wesley Longman, 1987.56 -61.
  • 7Wilson TD. Models in information behavior research[ J]. Jour-nal of Documentation, 1999,55(3) :249 -270.
  • 8Elizabeth F, Francis P. Maslow' s hierarchy of needs and ict: challenges of end-user adoption of digital life[J]. The Journal of The Institute of Telecommunications Professionals, 2008,2 (4) :23 -28.
  • 9LOU Htti-ling. Implementing the viterbi algodthm[J]. IEEE Signal Processing Magazine, 1995,12(5) :42 -52.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collabo-rative filtering recommendation algorithms[ A]. Proceedings ofthe 10th International Conference on World Wide Web[ C]. Hong Kong: ACM Press, 2001.285 -295.

共引文献58

同被引文献112

引证文献11

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部