期刊文献+

基于负载模式识别的Web应用在线异常检测方法

Online Anomaly Detection Approach for Web Applications with Workload Pattern Recognition
下载PDF
导出
摘要 负载模式的动态变化会影响系统度量,使得异常难以准确检测.针对此问题,提出一种基于负载模式识别、在线检测Web应用异常的方法.该方法基于在线增量式聚类算法,运行时识别动态变化的负载模式,根据特定负载模式对应的度量空间,利用局部异常因数检测异常状态,并量化异常程度,并通过学生t测试方法计算度量异常值,以定位异常原因.实验结果表明,所提方法能够准确识别负载模式变化,有效检测出Web应用典型错误所引起的异常状态,并定位异常原因. The dynamic fluctuation of workload influences system metrics,affects the precision of anomaly detection.This paper proposes an online anomaly detection approach for Web applications,which handles workload fluctuation in both request pattern and volume.The study proposes an incremental clustering algorithm to recognize online workload patterns automatically.For a specific workload pattern,the study adopts local outlier factor to detect anomaly and qualify the anomaly degree,and then locate the abnormal metrics with a student’s t-test method.The experimental results show that the clustering algorithm can accurately capture workload fluctuations in a typical Web application,and demonstrate that the approach is capable of not only detecting the typical faults in Web applications,but also locating the abnormal metrics.
出处 《软件学报》 EI CSCD 北大核心 2012年第10期2705-2719,共15页 Journal of Software
基金 国家自然科学基金(61173004) 国家重点基础研究发展计划(973)(2009CB320704) "核高基"国家科技重大专项(2011ZX03002-002-01)
关键词 WEB应用 异常检测 动态负载 增量式聚类 局部异常因数 Web application anomaly detection dynamic workload incremental clustering LOF(local outlier factor)
  • 相关文献

参考文献39

  • 1Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Computing Surveys, 2009,41(3):1-58. [doi: 10.1145/ 1541880.1541882].
  • 2Patterson D. A simple way to estimate the cost of downtime. In: Proc. of the 16th Int'l Conf. on System Administration. Philadelphia: Berkeley: USENIX Association, 2002. 185-188.
  • 3Chert MY, Accardi A, Kiciman E, Lloyd J, Patterson D, Fox A, Brewer E. Path-Based faliure and evolution management. In: Proc. of the 1st Int'l Symp. on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2004. 23-36.
  • 4Oppenheimer D, Ganapathi A, Patterson DA. Why do Internet services fail, and what can be done about it? In: Proc. of the 4th Int'l Conf. on Internet Technologies and Systems. Seattle: Berkeley: USENIX Association, 2003. 1-16.
  • 5Chen HF, Jiang GF, Yoshihira K, Saxena A. Invariants based failure diagnosis in distributed computing systems. In: Proc. of the 29th Int'l Symp. on Reliable Distributed Systems. Washington: IEEE Computer Society Press, 2010. 160-166. [doi: 10.1109/SRDS. 2010.26].
  • 6Ghanbari S, Amza C. Semantic-Driven model composition for accurate anomaly diagnosis. In: Proc. of the 5th Int'l Conf. on Autonomic Computing. Washington: IEEE Computer Society Press, 2008.35-44. [doi: 10.1109/ICAC.2008.33].
  • 7Sahoo RK, Oliner AJ, Rish I, Gupta M, Moreira JE, Ma S, Vilalta R, Sivasubramaniam A. Critical event prediction for proactive management in large-scale computer clusters. In: Proc. of the 9th Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2003. 426-435. [doi: 10.1145/956750.956799].
  • 8Fonseca R, Porter G, Katz RH, Shenker S, Stoica I. X-Trace: A pervasive network tracing framework. In: Proc. of the 4th Int'l Conf. on Networked Systems Design & Implementation. Berkeley: USENIX Assoeiation, 2007.20-33.
  • 9Chen HF, Jiang GF, Ungureanu C, Yoshihira K. Failure detection and localization in component based systems by online tracking. In: Proc. of the 1 lth Int'l Conf. on Knowledge Discovery in Data Mining. New York: ACM Press, 2005. 750-755. [doi: lO.1145/ 1081870.1081968].
  • 10Jiang GF, Chen HF, Yoshihira K. Discovering likely invariants of distributed transaction systems for autonomic system management. In: Proe. of the 3rd Int'l Conf. on Autonomic Computing. Washington: IEEE Computer Society Press, 2006. 199-208. [doi: 10.1109/ICAC.2006.1662399].

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部