摘要
负载模式的动态变化会影响系统度量,使得异常难以准确检测.针对此问题,提出一种基于负载模式识别、在线检测Web应用异常的方法.该方法基于在线增量式聚类算法,运行时识别动态变化的负载模式,根据特定负载模式对应的度量空间,利用局部异常因数检测异常状态,并量化异常程度,并通过学生t测试方法计算度量异常值,以定位异常原因.实验结果表明,所提方法能够准确识别负载模式变化,有效检测出Web应用典型错误所引起的异常状态,并定位异常原因.
The dynamic fluctuation of workload influences system metrics,affects the precision of anomaly detection.This paper proposes an online anomaly detection approach for Web applications,which handles workload fluctuation in both request pattern and volume.The study proposes an incremental clustering algorithm to recognize online workload patterns automatically.For a specific workload pattern,the study adopts local outlier factor to detect anomaly and qualify the anomaly degree,and then locate the abnormal metrics with a student’s t-test method.The experimental results show that the clustering algorithm can accurately capture workload fluctuations in a typical Web application,and demonstrate that the approach is capable of not only detecting the typical faults in Web applications,but also locating the abnormal metrics.
出处
《软件学报》
EI
CSCD
北大核心
2012年第10期2705-2719,共15页
Journal of Software
基金
国家自然科学基金(61173004)
国家重点基础研究发展计划(973)(2009CB320704)
"核高基"国家科技重大专项(2011ZX03002-002-01)
关键词
WEB应用
异常检测
动态负载
增量式聚类
局部异常因数
Web application
anomaly detection
dynamic workload
incremental clustering
LOF(local outlier factor)