期刊文献+

基于移动模糊推理的DoS攻击检测方法 被引量:5

DoS Attack Detection Method Based on Removal Fuzzy Reasoning
下载PDF
导出
摘要 通过对入侵检测中模糊技术应用和移动模糊推理方法的研究,设计并实现了基于移动模糊推理的DoS攻击入侵检测系统.首先,描述了移动模糊推理方法与模糊推理步骤;其次,详细阐述了用时间差与IP地址分布变化的DoS攻击检测方法与基于移动模糊推理的攻击检测系统,创建了用于检测的模糊规则,确定网络攻击.最后,把DoS攻击工具与DARPA 98数据集作为入侵检测数据集,对基于移动模糊推理的方法与现行方法进行测试,验证了所提方法的有效性. According to the study of the application of fuzzy technique in the intrusion detection and removal fuzzy reasoning method, the DoS attack intrusion detection system was designed and realized on the basis of removal fuzzy reasoning method. Firstly, the removal fuzzy reasoning method and fuzzy reasoning step were described. Then, DoS attack detection method using the interval and the IP address distribution change was described and so was the detection system based on removal fuzzy reasoning. The fuzzy rules for detection were made to determine network attack. Finally, the validity of the proposed method was checked by testing the method based on the removal fuzzy reasoning and the existing method with DoS attack tool and DARPA 98 dataset as intrusion detection dataset.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第10期1394-1398,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60970157) 辽宁省博士启动基金资助项目(2081019)
关键词 网络 模糊推理 入侵检测 DOS攻击检测 异常检测 network fuzzy reasoning intrusion detection DoS attack detection anomaly detection
  • 相关文献

参考文献12

  • 1Murali A, Rao M. A survey on intrusion detection approaches [C]//The First International Conference on Information and Communication Technologies. IEEE, 2005:233 - 240.
  • 2Idris N B, Shanmugam B. Artificial intelligence techniques applied to intrusion detection[ J ]. Annual IEEE, 2005,11 / 12/13:52 - 55.
  • 3Zhou Y P, Fang J A. Research on neuro-fuzzy inference system in hierarchical intrusion detection I C ]//Information Technology and Computer Science. IEEE, 2009:253 - 256.
  • 4王春震,郭亚军,于兆吉,陈薇.基于案例推理的信用风险控制系统[J].东北大学学报(自然科学版),2007,28(3):449-453. 被引量:2
  • 5Zhou Y P, Fang J A. Intrusion detection model based on hierarchical fuzzy inference system [ C ] // The Second International Conference on Information and Computing Science. IEEE, 2009 : 144 - 147.
  • 6Liao N D, Tian S F, Wang T H. Network forensics based on fuzzy logic and expert system [ J ]. Computer Communications, 2009,32(17) : 1881 - 1892.
  • 7Hoang X D, Hu J K, Bertok P. A program-based anomaly intrusion detection scheme using multiple detection engines and fuzzy inference[J]. Journal of Network and Computer Applications, 2009,32(6) : 1219 - 1228.
  • 8Wang G, Hao J X, Ma J, et al. A new approach to intrusion detection using artificial neural networks and fuzzy clustering [J]. Expert Systems with Applications, 2010,37(9):6225 - 6232.
  • 9Ho C M, Li J J, Gwak S I. Research of a new fuzzy reasoning method by moving of fuzzy membership functions [C]//IPTC 2010. IEEE Computer Society, 2010: 297- 300.
  • 10林智勇,郝志峰,杨晓伟.若干评价准则对不平衡数据学习的影响[J].华南理工大学学报(自然科学版),2010,38(4):147-155. 被引量:23

二级参考文献28

  • 1常春光,崔建江,汪定伟,胡琨元.案例推理中案例调整技术的研究[J].系统仿真学报,2004,16(6):1260-1265. 被引量:36
  • 2Chawla N V,Japkowicz N,Kotcz A.Editorial:special issue on learning from imbalanced data sets[J].ACM SIGKDD Explorations Newsletter,2004,6(1):1-6.
  • 3Yang Q,Wu X.10 challenging problems in data mining research[J].International Journal of Information Technology & Decision Making,2006,5(4):597-604.
  • 4Sokolova M,Japkowicz N,Szpakowicz S.Beyond accuracy,F-score and ROC:a family of discriminant measures for performance evaluation[C]∥Proceedings of the 2006 Australian Joint Conference on Artificial Intelligence (AI 2006).Hobart:Springer,2006:1015-1021.
  • 5Caruana R,Niculescu-Mizil A.Data mining in metric space:an empirical analysis of supervised learning performance criteria[C]∥Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD 2004).Seattle:ACM Press,2004:69-78.
  • 6Ferri C,Hernández-Orallo J,Modroiu R.An experimental comparison of performance measures for classification[J].Pattern Recognition Letters,2009,30(1):27-38.
  • 7Vapnik V N.Statistical learning theory[M].New York:John Wiley & Sons,1998.
  • 8Duda R O,Hart P E,Stork D G.Pattern Classification[M].2nd ed.New York:John Wiley & Sons,2001.
  • 9Yan L,Dodier R,Mozer M C,et al.Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic[C]∥Proceedings of the 20th International Conference on Machine Learning (ICML 2003).Washington:AAAI Press,2003:848-855.
  • 10Veropoulos K,Campbell C,Cristianini N.Controlling the sensitivity of support vector machines[C]∥Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence.Stockholm:Morgan Kaufmann,1999:55-60.

共引文献23

同被引文献41

  • 1涂亚平,刘萍,谢宝陵,吴海兵.基本蚂蚁算法中算法参数的优化[J].小型微型计算机系统,2007,28(11):1985-1987. 被引量:9
  • 2Elngar A A,El AMD A,Ghaleb F F M.A Real -TimeAnomaly Network Intrusion Detection System with High Ac-curacy[J]. Information Sciences Letters, 2013,35⑶:49-56.
  • 3Subaira. A S, Anitha. P. A Survey: Network Intrusion Detec-tion System based on Data Mining Techniques [J]. Interna-tional Journal of Computer Science & Mobile Computing,2013,2(10):174-185.
  • 4Hsieh C F, Cheng K F, Huang Y F, et al. An Intrusion De-tection System for Ad Hoc Networks with Multi -attacksBased on a Support Vector Machine and Rough Set Theory[J], Journal of Convergence Information Technology, 2013,26(5):269-281.
  • 5Mehta S B,Chaudhury S, Bhattacharyya A, et al. Tissueclassification in magnetic resonance images through the hy-brid approach of Michigan and Pittsburg genetic algorithm.[J]. Applied Soft Computing, 2011,11(4):3476 - 3484.
  • 6LiW, Gong Z, Michigan-based variable -length encoding ofgenetic algorithm for k-anonymization[Cy/ Information Scienceand Engineering (ICISE), 2010 2nd International Conferenceon. 2010:1295-1298.
  • 7DaiF,Zheng K, Binwu, et al. Using Genetic Algorithm forOptimal Security Hardening in Risk Flow Attack Graph [J].Ksii Transactions on Internet & Information Systems, 2015, 9(4):3476 - 3484.
  • 8Babbar-SebensM,Minsker B S. Interactive Genetic Algo-(上接第111页)rithm with Mixed Initiative Interaction for multi -criteriaground water monitoring design [J]. Applied Soft Computing,2012,12(1):182-195.
  • 9WanwarangT, Ongtang M. Elitism Enhancements for Ge-netic Algorithm based Network Intrusion Detection System[J].Journal of Convergence Information Technology, 2013,38(5):137-140.
  • 10EIhag S,Fernandez A,Bawakid A,et al.On the combina- tion of genetic fuzzy systems and pairwise learning for improving detection rates on Intrusion Detection Sys- tems[J].Expert Systems with Applications,2015,42(1):193-202.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部