期刊文献+

以硅酸钠为前驱物采用间隔自组装法制备有序介孔SBA-15 被引量:2

Synthesis of Ordered Mesoporous SBA-15 by Partitioned Cooperative Self-Assembly Using Sodium Silicate as Precursor
下载PDF
导出
摘要 以硅酸钠为前驱物,三嵌段共聚物(P123)为模板剂,分别采用传统过程和间隔自组装(PCSA)过程制备有序介孔二氧化硅(SBA-15).分别考察了两种制备过程中硅酸钠加入量对SBA-15结构的影响.与传统制备过程相比,采用间隔自组装过程,通过简单的调节硅酸钠在不同阶段中的加入量,在不使用添加剂及特殊的制备条件下,可制备孔径可调的SBA-15,其最大孔径可达到10.3 nm(KJS法).所提方法也可规律性地调节SBA-15的孔壁厚度和微孔孔隙度. The ordered mesoporous SBA-15 was synthesized by the conventional process as well as the partitioned cooperative self-assembly(PCSA) process using the nonionic triblock copolymers (P123) as template and sodium silicate as the silica precursor. The influence of the amounts of sodium silicate on the mesostructures of SBA-15 from the conventional process and the PCSA process, respectively, were investigated. Compared with the conventional process, without using any additives and especial synthetic conditions, the PCSA process can effectively produce larger mesopore size (up to 10.3 nm, KJS) of SBA-15 by adjusting the additive mass of sodium silicate in different stages of the process. The PCSA process can also facilely adjust the pore wall thickness and microporosities of SBA-15 in a controllable way.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第10期1415-1418,共4页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2009AA032501) 中央高校基本科研业务费专项资金资助项目(N100302001) 教育部创新团队发展计划项目(IRT0713)
关键词 SBA-15 有序介孔材料 二氧化硅 间隔自组装 硅酸钠 SBA-15 ordered mesoporous silica partitioned cooperative self-assembly sodium silicate
  • 相关文献

参考文献11

  • 1Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom poresIJ]. Sciences, 1998,279(5350) :548 - 552.
  • 2Zhang H, Ma D, Weinberg G, et al. Engineered complex emulsion system: toward modulating the pore length and morphological architecture of mesoporous silicas[J]. Journal of Physical Chemistry 13, 2006,110(51) :25908 - 25915.
  • 3Newalkar B L, Komarneni S. Simplified synthesis of micropore-free mesoporous silica, SBA-15 under microwave- hydrothermal conditions I J ]. Chemical Communications, 2002,2(16) :1774- 1775.
  • 4Linton P, Alfredsson V. Growth and morphology of mesoporous SBA-15 particles[ J ]. Chemistry of Materials, 2008,20(9) :2878 - 2880.
  • 5Chen S, Tang C, Chuang W, et al. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels E J ]. Chemistry of Materials, 2008,20 (12) : 3906 - 3916.
  • 6Cao L, Man T, Kruk M. Synthesis of ultra large-pore SBA 15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander [ J 1. Chemistry of Materials, 2009,21(6) :1144 - 1153.
  • 7Sun J, Zhang H, Ma D, et al. Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores [ J ]. Chemical Communications, 2005,5(42) :5343 - 5345.
  • 8Chen S, Chen Y, Lee J, et al. Tuning pore diameter of platelet SBA-15 materials with short mesochannels for enzyme adsorption[ J ]. Journal of Materials Chemistry, 2011,21 (15) :5693- 5703.
  • 9Wang W, Shan W J, Ru H Q, et al. A facile and versatile partitioned cooperative seif-assemb[y process to prepare SBA- 15s with larger mesopores, high microporosity and tunable particle sizes[J ]. Journal of Materials Chemistry, 2011,21 (32) :12059 - 12067.
  • 10Kruk M, Jaroniec M, Sayari A. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurementsIJl. Langmuir, 1997,13 (23) :6267 - 6273.

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部