期刊文献+

论确定全球大地水准面的斯托克斯方法 被引量:2

On Stokes' Approach for Determining Global Geoid
下载PDF
导出
摘要 确定全球大地水准面最常用的方法是斯托克斯方法。然而,除了人们熟知的缺陷之外,斯托克斯方法还存在人们没有意识到的理论困难:当大地水准面位于参考椭球(WGS-84椭球)内部时,在大地水准面上及其与参考椭球面界定的区域中扰动位没有定义,当然在这部分区域也不调和。为了解决这一困难,可以选取一个包含在大地水准面内部的由4个基本参数唯一确定其外部正常重力位的参考椭球(简称内部椭球),其中心与WGS-84椭球的中心重合,其中的两个基本参数,旋转角速度和地心引力常数,与WGS-84椭球面的相同,另外两个参数,半长轴和扁率,如此选取,使得内部椭球产生的新的正常重力位在WGS-84椭球面上与大地水准面上的重力位W0相等。这样,传统的斯托克斯方法中存在的理论困难不复存在。 Stokes' approach is one of the most frequently used approaches for determining the global geoid. However, besides the well-known drawbacks, there still exist theoretical difficulties: in case that the geoid is below the surface of a reference ellipsoid, the disturbing potential function is not defined and neither harmonic in the whole region outside thegeoid. To take away these difficulties, we choose an inner ellipsoid enclosed by thegeoid, with four fundamental parameters, with its center coinciding with that of the ellipsoid, and two of which, the geocentric constant and rotation rate, coincide with the corresponding parameters of the ellipsoid, and the other two parameters, semi-major axis and flattening, are chosen in such a way that the new normal gravity potential generated by the inner ellipsoid has the constant W0 on the surface of the ellipsoid, where W0 is the geopotential constant on the geoid. By this new formulation, the disturbing potential function is harmonic in the whole region outside the geoid, and the difficulties existing in the conventional Stokes' aooroach vanish.
作者 申文斌
出处 《测绘学报》 EI CSCD 北大核心 2012年第5期670-675,689,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(40974015 41174011) 国家自然基金创新群体项目(41021061) 国家自然基金海外与港澳学者合作研究基金(41128003)
关键词 斯托克斯方法 参考椭球 扰动位 大地水准面确定 改进的斯托克斯方法 Stokes' approach reference ellipsoid disturbing potential geoid determination modified Stokes'sapproach
  • 相关文献

参考文献26

  • 1GRAFAREND E W. What is a Geoid? [C]J//Geoid and Its Geophysical Interpretations. London CRC Press, 1994.
  • 2HEISKANEN W A, MORITZ H. Physical Geodesy[M]. San Francisco: Freeman and Company, 1967.
  • 3HOFMANN W B, MORITZ H. Physical Geodesy[M]. 2nd ed. Wien: Springer, 2005.
  • 4申文斌,宁津生,李建成,晁定波.论大地水准面[J].武汉大学学报(信息科学版),2003,28(6):683-687. 被引量:10
  • 5晁定波,申文斌,王正涛.确定全球厘米级精度大地水准面的可能性和方法探讨[J].测绘学报,2007,36(4):370-376. 被引量:20
  • 6STOKES G G. On the Variation of Gravity at the Surface of the Earth[J]. Transactions of the Cambridge Philosophical Society, 1849(8) 672-695.
  • 7WONG L, GORE R. Accuracy of Geoid Heights from Modified Stokes Kernels[J]. Geophysical Journal. Royal Astronomical Society , 1969(18) 81 91.
  • 8VANICEK P, KLEUSBERG A. The Canadian Geoid--Stoke- sian Approach[J]]. Manus Geodesy, 1987(12)= 86-98.
  • 9VANIvCEK P, MARTINEC Z. Stokes Helmert Scheme for the Evaluation of a Precise Geoid[J]. Manus Geodesy, 1994(19) : 119-128.
  • 10MARTINEC Z. Boundary value Problems for Gravimetric Determination of Precise Geoid [C] // Lecture Notes in Earth Sciences. Berlin:Springer, 1998.

二级参考文献40

共引文献45

同被引文献24

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部