期刊文献+

基于高斯过程回归的短期风速预测 被引量:94

Short-term Wind Speed Forecasting Based on Gaussian Process Regression Model
下载PDF
导出
摘要 准确预测风速能有效减轻风电场对整个电网的不利影响,提高风电场在电力市场中的竞争能力。为了提高风速预测的精度,提出一种基于高斯过程(Gaussian processes,GP)的风速预测模型。首先运用自相关法和假近邻法分别求取风速时间序列的延迟时间和嵌入维数,进而对混沌风速时间序列进行相空间重构。其次运用GP模型对重构后的风速时间序列进行训练,同时在贝叶斯框架下,确定协方差函数中的"超参数"。最后利用训练好的GP模型风速时间序列进行预测,并与支持向量机、最小二乘支持向量机和BP神经网络进行比较。仿真结果表明,基于GP的风速预测模型具有很好的稳定性,能够满足预测精度的要求,具有很大的工程实际应用价值。 The short-term wind speed forecasting is very important for the operation of grid-connected wind power generation systems. The accuracy forecasting of the wind speed can also effectively reduces or avoids the adverse effect of wind farm on power grid, meanwhile, strengthens competition ability of wind farm in electricity market. In order to improve the forecasting accuracy, a wind speed forecasting method based on the Gaussian process (GP) was proposed. Firstly, the embedding dimension and the delay time of the wind speed time series were respectively calculated by autocorrelation method and false neighbor method, the phase space reconstruction of the chaotic wind speed time series was received. Then, the reconstructed wind speed time series was predicted by the GP model, at the same time the "super parameter" in the covariance function was determined under the Bayesian framework. Finally, wind speed time series was used to predict by the trained GP, which was compared with support vector machine (SVM), least squares support vector machine (LSSVM) and BP neural network (BPNN). The simulation results show that GP predict model can be used to accurately predict and has stable performance. So it can be widely used in engineering practice.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第29期104-109,I0015,共7页 Proceedings of the CSEE
基金 电力青年科技创新项目(201002)~~
关键词 高斯过程 风速时间序列 相空间重构 预测 Gaussian process wind speed time series phase space reconstruction forecasting
  • 相关文献

参考文献23

  • 1朱柯丁,宋艺航,谭忠富,张会娟.中国风电并网现状及风电节能减排效益分析[J].中国电力,2011,44(6):67-70. 被引量:49
  • 2Fan Shu, Liao J R, Yokoyama R, et al. Forecasting the wind generation using a two-stage network based on meteorological information[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 474-482.
  • 3Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]//IEEE Power Industry Computer Applications Conference, Sydney, NSW, 2001.
  • 4Sanchez I. Short-term prediction of wind energy production[J]. International Journal of Forecasting, 2006, 22(1): 43-56.
  • 5Alexandre C, Antonio C, Jorge N, et al. A review on the young history of the wind power short-term prediction[J] . Renewable and Sustainable Energy Reviews, 2008, 12(4): 1725-1744.
  • 6Barthelmie R J, Murray F, Pryor S C. The economic benefit of short-term forecasting for wind energy in the UK electricity market[J]. Energy Policy, 2008, 36(5): 1687-1696.
  • 7黄小华,李德源,吕文阁,成思源.基于人工神经网络模型的风速预测[J].太阳能学报,2011,32(2):193-197. 被引量:34
  • 8魏晓霞.我国风电发展存在的问题和应对措施[J].电力技术经济,2009,21(6):23-26. 被引量:28
  • 9Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
  • 10Bossanyi E A. Short-term wind speed using Kalman filters[J]. Wind Engineering, 1985, 9(1): 1-7.

二级参考文献113

共引文献984

同被引文献915

引证文献94

二级引证文献807

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部