期刊文献+

多尺度、多角度异源遥感影像配准方法研究 被引量:2

Registration method for heterogenous remote sensing images with multi-scale and multi-angle
下载PDF
导出
摘要 针对具有显著尺度和角度差异的异源遥感影像配准中存在的问题,引入具有角度不变性和同一尺度的空间辅助圆,克服角度和尺度偏差;选取对异源影像的光谱差异具有高鲁棒性的归一化互信息测度,基于空间辅助圆提取统计特征进行区域配准。该方法还将同名特征点的搜索范围限制在辅助圆内,在保证算法搜索效率的同时提高了配准的精度。选取具有较大尺度和角度偏差的异源遥感影像进行实验,通过与基于空间辅助面的配准方法相比较,证明基于空间辅助圆的归一化互信息配准方法对角度和光谱偏差具有较高的鲁棒性,配准模型的精度小于一个像素。 Aiming to the high accuracy registration between heterogenous images with differences in angles and scales, the spatially assistant circles with invariant angle and same scale are introduced, and the normalized mutual information robust to spectrum differences is adopted to compute the statistical features in the assistant circles. It confines the searching range to the assistant circle, which increases the registration precision while the searching efficiency is guaranteed. Optical and SAR images with considerable differences in scale and angle are tested, and the registration method based on spatial assistant plane is used for comparison. The experimental results indicate that the registration method based on spatially assistant circle and normalized mutual information is robust to differences in angle and spectrum. Moreover, the registration model’s error is lower than one pixel.
出处 《计算机工程与应用》 CSCD 2012年第30期5-9,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.40901234) 北京林业大学青年科技启动基金(No.BLX2011003)
关键词 多尺度多角度的异源遥感影像配准 空间辅助圆 角度不变性 归一化互信息 heterogenous images registration with multi-angle and multi-scale spatially assistant circle invariant angle normalized mutual information
  • 相关文献

参考文献12

  • 1Zitova B,Flusser J.Image registration methods:a survey[J]. Image and Vision Computing,2003,21:977-1000.
  • 2Brown L G.A survey of image registration techniques[J]. ACM Computing Survey, 1992,24(4) :325-376.
  • 3Ftirstner W.A feature based correspondence algorithm for image matching[J].International Archives of Photogram- metry and Remote Sensing, 1986,26(3) : 150-166.
  • 4Li H, Manjunath B S,Mitra S K.A contour-based ap- proach to multisensor image registration[J].IEEE Trans- actions on Image Processing, 1995,4(3) : 320-334.
  • 5Dare P, Dowman I.An improved model for automatic fea- ture-based registration of SAR and SPOT images[J].IS- PRS Journal of Photogrammetry and Remote Sensing, 2001,56: 13-28.
  • 6王丽,孙丰荣,王奕琨,等.基于互信息的颅脑MR影像序列的三维配准[J].汁算机工程与应用,2011,47(31):160-163.
  • 7Inglada J, Muron V, Pichard D, et al.Analysis of artifacts in subpixel remote sensing image registration[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45( 1 ) :254-264.
  • 8Shams R,Kennedy R A, Sadeghi P, et al.Gradient inten- sity-based registration of multi-modal images of the brain[C]//IEEE llth International Conference on Com- puter Vision(ICCV 2007), 2007.
  • 9Viola P, Wells W.Alignment by maximization of mutual inforrnation[C]//Proceedings of the 5th International Con- ference on Computer Vision, Cambridge, MA, USA, 1995 : 16-23.
  • 10Collignon A, Vandermeulen D, Suetens P, et al.Automat- ed multimodality medical image registration using in- formation theory[C]//Proceedings of the XIVth Interna- tional Conference on Information Processing in Medi- cal Imaging.Ile de Derder,France:Kluwer Academic Pub- lishers, 1995 : 263-274.

二级参考文献19

  • 1Ackermann F.1983.High precision digital image correlation.Proceeding of the 39th Photogrammetric Week.
  • 2Ardeshir G,George C S and Carl V P.1986.A region-based approach to digital image registration with subpixel accuracy.IEEE Transactions on Geoscience and Remote Sensing,24(3):390-399.
  • 3Ayaehe N and Fvaerjon B.1985.Fast setero matching of edge segments using prediction and verifi-ceation of hypotheses.Proceedings of Computer Vision and Pattern Cognition.
  • 4Brown L G.1992.A survey of image registration techniques.ACM Computing Survey,24(4):325-376.
  • 5Carlotto M J.1997.Detection and analysis of change in remotely-sensed imagery with applicatinn to wide area surveillance.IEEE Transactions on Image Processing,6(1):189-202.
  • 6Chen H,Varshney P and Arora M.2003.Performance of mutual information similarity measure for registration of multitemporal remote sensing images.IEEE Transaction on Geoscience and Remote Senseing,41(11):2445-2454.
  • 7Forstner W.1986.A feature based correspondence algorithm for image matching.International Archives of Photogrammetry and Remote Sensing,26(3):150-166.
  • 8Inglada J.2002.Similarity measures for multisensor remote sensing images.International Geoscience and Remote Sensing Symposinm (IGARSS).
  • 9Hannah M J.1989.A system for digital stereo image matching.Photogrammetric Engineering and Remote Sensing,55(12):1765-1770.
  • 10Karna D K,Agarwal S and Nikam S.2008.Normalized cross-correlation based fingerprint matching.2008 Fifth International Conference on Computer Graphics,Imaging and Visualisation.

同被引文献16

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部