期刊文献+

混沌Ikeda系统同步及其在保密通信中的应用

Exponential synchronization of chaotic Ikeda systems with applications in secure communication
下载PDF
导出
摘要 针对一类时滞Ikeda混沌系统,利用Lyapunov稳定和微分不等式,研究了其指数同步问题。基于线性矩阵不等式理论得到了指数同步的充分条件,给出了指数同步控制器的设计方法,利用混沌掩盖将该同步方法应用于保密通信。仿真表明,该方案具有同步速度快、鲁棒性良好等优良性能。 The exponential synchronization of Ikeda delayed chaotic systems is discussed. An exponential synchronization controller is designed based on Lyapunov stability theory and differential inequality. A sufficient condition of exponential synchronization is proposed by using the linear matrix inequality. The proposed method is applied to secure communications. Simulation shows that the proposed scheme has high speed and good robustness.
出处 《计算机工程与应用》 CSCD 2012年第30期95-97,121,共4页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(No.60974020) 山东省高等学校优秀青年教师国内访问学者项目
关键词 Ikeda混沌系统 时滞 指数同步 保密通信 Ikeda chaotic system delayed exponential synchronization secure communication
  • 相关文献

参考文献5

  • 1Pecoral L M,Carroll T L.Synchronization in chaotic sys- tems[J].Physical Review Letters, 1990 ( 8 ) : 821-824.
  • 2谢英慧,孙增圻.时滞Chen混沌系统的指数同步及在保密通信中的应用[J].控制理论与应用,2010,27(2):133-137. 被引量:16
  • 3Halanay A.Differential equations: stability, oscillations, time lags[M].New York:Academic Press, 1965:377-383.
  • 4Chen M, Zhou D H, Shang Y.Integrity control of chaotic systems[J].Physics Letters A,2006,350(3/4):214-220.
  • 5Li C D, Liao X F, Zhang R.A unified approach for im- pulsive lag synchronization of chaotic systems with time de!ay[J].Chaos Solitons and Fractals,2005,23(4): 1177-1184.

二级参考文献14

  • 1PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letter, 1990, 64(8): 821 - 824.
  • 2GRZYBOWSKI J M V, RAFIKOV M, BALTHAZAR J M. Synchronization of the unified chaotic system and application in secure communication[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(6): 2793 - 2806.
  • 3NANA B, WOAFO E DOMNGANG S. Chaotic synchronization with experimental application to secure communications[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2266 - 2276.
  • 4BOWONG S, MOUKAM K F M, SIEWE S M. Secure communication via parameter modulation in a class of chaotic systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(3): 397 -410.
  • 5ZHENG G, BOUTAT D, FLOQUET T, et al. Secure communication based on multi-input multi-output chaotic system with large message amplitude[J]. Chaos, Solitons and Fractals, 2009, 4(13): 1510 - 1517.
  • 6DING M Z, DING E J, DITTO W L, et al. Control and synchronization of chaos in high dimensional systems: review of some recent results[J]. Chaos, 1997, 7(4): 644- 652.
  • 7BAI E, LONNGREN K E, UQAR A. Secure communication via multiple parameter modulation in a delayed chaotic system[J]. Chaos, Soiltons and Fractals, 2005, 23(3): 1071 - 1076.
  • 8MOEZ E An adaptive chaos synchronization scheme applied to secure communication[J]. Chaos, Solitons and Fractals, 2003, 18(1): 141 - 148.
  • 9YANG X S, DUAN C K, LIAO X X. A note on mathematical aspects of drive-response type synchronization[J]. Chaos, Solitons and Fractals, 1999, 10(9):1457- 1462.
  • 10YIN X H, REN Y, SHAN X M. Synchronization of discrete spatiotemporal chaos by using variable structure control[J]. Chaos, Solitons and Fractals, 2002, 14(7): 1077 - 1082.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部