期刊文献+

改进的蛙跳算法在多目标优化问题中的应用 被引量:4

Application of improved Shuffle Frog Leaping Algorithm to resolve multi-objective optimization problem
下载PDF
导出
摘要 在介绍原始混洗蛙跳算法的基础上,引入遗传算法中的遗传算子,改进原始蛙跳算法的分组方法,提出一种改进的混洗蛙跳算法用于求解多目标优化问题。改进的算法以多目标0-1背包问题为例进行模拟实验,其实验结果表示,与原始的混洗蛙跳算法相比较,改进的蛙跳算法在求解多目标优化问题上具有更好的性能。 This paper draws genetic operators of GA and improves the method of SFLA group dividing based on introducing SFLA, puts forward an improved SFLA to resolve problem of multi-objective optimization. The improved method takes multi-objective 0-1 knapsack as an example for simulated experiment, which bears out that, compared with original SFLA, the improved SFLA has better performance on resolving improved SFLA problem.
出处 《计算机工程与应用》 CSCD 2012年第30期233-238,共6页 Computer Engineering and Applications
基金 湖南省教育厅资助科研项目(No.09C648)
关键词 混洗蛙跳算法 多目标优化问题 遗传算子 分组方法 多目标0-1背包问题 Shuffle Frog Leaping Algorithm(SFLA) multi-objective optimization genetic operators grouping method multi-objective 0-1 knapsack problem
  • 相关文献

参考文献12

  • 1Eusuff M M, Lansey K E.Water distribution network de- sign using the Shuffled Frog leaping algorithm[C]//World Water Congress,2001.
  • 2罗雪晖,杨烨,李霞.改进混合蛙跳算法求解旅行商问题[J].通信学报,2009,30(7):130-135. 被引量:93
  • 3李英海,周建中,杨俊杰,刘力.一种基于阈值选择策略的改进混合蛙跳算法[J].计算机工程与应用,2007,43(35):19-21. 被引量:80
  • 4Elbeltagi E, Hegazy T, Grierson D.Comparison among five evolutionary-based optimization algofithms[J].Advanced En- gineering Informatics,2005,19( 1 ) :43-53.
  • 5Elbeltagi E, Hegazy T, Grierson D.A modified shuffled frog-leaping optimization algorithm: applications to proj- ect management[J].Structure and Infrastructure Engineer- ing, 2007,3 ( 1 ) : 53-60.
  • 6Zhen Z Y,Wang Z S,Gu Z,et al.A novel memetic algo- rithm for global optimization based on PSO and SFLA[C]// Lecture Notes in Computer Science,2007,4683 : 127-136.
  • 7Zhang X C, Hu X M,Cui G Z, et al.An improved shuf- fled frog leaping algorithm with cognitive behavior[C]// Proceedings of the 7th World Congress on Intelligent Con- trol and Automation, Chongqing, China, 2008: 6197-6202.
  • 8Eusuff M M, Lansey K E.Optimization of water distribu- tion network design using the shuffled frog leaping algo- rithm[J].Water Resour Plan Manage, 2003,129 (3) : 210-225.
  • 9Eusuff M M,Lansey K E,Pasha F.Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimi- zation[J].Eng Optim,2006,38(2) : 129-154.
  • 10Rahimi-Vahed A, Mirzaei A H.A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assem- bly line sequencing Problem[J].Computer & Industrial Engineering, 2007,53 (4).

二级参考文献76

共引文献191

同被引文献51

  • 1李宇中,刘红星,张胜.猴王遗传算法的改进[J].南京师范大学学报(工程技术版),2004,4(3):53-56. 被引量:11
  • 2DORIGO M, GAMBARDELLA L M. Ant colony system: a coopera- tive learning approach to the traveling salesman problem[ J]. IEEE Transactions on Evolutionary Computation, 1997,1(1):53 -66.
  • 3EUSUFF M M, LANSEY K E. Optimization of water distribution network design using shuffled frog leaping algorithm[ J]. Journal of Water Resources Planning and Management, 2003, 129(3) : 210 - 225.
  • 4CHEN H, ZHOU Y, HU K. Multi-colony bacteria foraging optimi- zation with cell-to-cell communication for RFID network planning [J]. Applied Soft Computing, 2010, 10: 539-547.
  • 5KRISHNANAND K N, GHOSE D. Glowworm swarm optimization for simultaneous capture of multiple local optima of muhimodal func- tions[ J]. Swarm Intelligence, 2009, 3(7) : 87 - 124.
  • 6KARABOGA D , AKAY B . A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems[ J]. Ap- plied Soft Computing, 2011, 11(3) : 3021 -3031.
  • 7LI Z, ZHANG Z, WANG J, et al. Bee genetic algorithm based on immune evolution and chaotic mutation [ J]. Applied Mechanics and Materials, 2012, 198/199:1523 - 1526.
  • 8Eusuff M M,Lansey K E.Optimization of water distribution network design using the shuffled frog leaping algorithm[J].Journal of Water Resources Planning and Management,2003,129(3):210-225.
  • 9Duan Q Y,Gupta V K,Sorooshian S.Shuffled complex evolution approach for effective and efficient global minimization[J].Journal of Optimization Theory and Applications,1993,76(3):501-521.
  • 10Wang N,Li X,Chen X.Fast three-dimensional Otsu thresholding with shuffled frog-leaping algorithm[J].Pattern Recognition Letters,2010,31(13):1809-1815.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部