摘要
在介绍原始混洗蛙跳算法的基础上,引入遗传算法中的遗传算子,改进原始蛙跳算法的分组方法,提出一种改进的混洗蛙跳算法用于求解多目标优化问题。改进的算法以多目标0-1背包问题为例进行模拟实验,其实验结果表示,与原始的混洗蛙跳算法相比较,改进的蛙跳算法在求解多目标优化问题上具有更好的性能。
This paper draws genetic operators of GA and improves the method of SFLA group dividing based on introducing SFLA, puts forward an improved SFLA to resolve problem of multi-objective optimization. The improved method takes multi-objective 0-1 knapsack as an example for simulated experiment, which bears out that, compared with original SFLA, the improved SFLA has better performance on resolving improved SFLA problem.
出处
《计算机工程与应用》
CSCD
2012年第30期233-238,共6页
Computer Engineering and Applications
基金
湖南省教育厅资助科研项目(No.09C648)
关键词
混洗蛙跳算法
多目标优化问题
遗传算子
分组方法
多目标0-1背包问题
Shuffle Frog Leaping Algorithm(SFLA)
multi-objective optimization
genetic operators
grouping method
multi-objective 0-1 knapsack problem