摘要
G蛋白偶联受体广泛参与各类生理活动的调控,目前市场上1/2的小分子药物均是以GPCR为药物靶标。由于G蛋白偶联受体晶体结构缺乏,采用理论方法对G蛋白受体耦合特异性进行分类预测在药物研发领域有着重要的学术和应用价值。因此,本文采用模式识别方法,基于GPCR序列,以伪氨基酸算法以及遗传算法为基础,用支持向量机方法建立了G蛋白偶联受体耦合特异性的预测模型,取得了可达82.5%的较高的预测准确度。
G protein-coupled receptor(GPCR) has widely participated in the regulation of various physiological functions. GPCR has been drug target of most drug moleeules on the market. Due to lack of crystal structures of GPCR,it is important to use computation- al method to predict the coupling selectivity of GPCRs in the drug design field. Thereby, in the work, the pseudo-amino acids algo- rithm,the genetic algorithm and the Support Vector Machine method are used to carry out classification prediction of GPCR, by means of the protein sequence information. The prediction accuracy of the elassification model reaches up to 82. 5%.
出处
《化学研究与应用》
CAS
CSCD
北大核心
2012年第10期1534-1539,共6页
Chemical Research and Application
基金
2012年"全国大学生创新创业训练计划"四川大学国家级项目(201210610046)资助
2012年"全国大学生创新创业训练计划"四川大学校级项目(20120166)资助
关键词
G蛋白偶联受体
模式识别
伪氨基酸算法
遗传算法
G protein-coupled receptor
pattern recognition
pseudo-amino acids algorithm
genetic algorithm