期刊文献+

节点归属性动态估计的机会网络社区检测策略 被引量:5

Node-belongingness dynamic estimate community detect strategy in opportunistic networks
下载PDF
导出
摘要 为了提高机会网络社区结构检测的合理性和有效性,根据机会网络的特性,提出了一种低开销、分布式动态社区检测策略。根据节点的社会属性,节点动态地估计自身归属性,进而感知对所属社区的归属性,约束标签的传播过程,最终完成机会网络的社区结构检测。并将仿真结果与其他算法进行比较,本机制社区检测准确率相较于HCDA提高大约50%,且具有较强的扩展性,适用于各种复杂的网络场景。 In order to improve community structure detection of rationality and validity in opportunistic networks. According to the characteristics of the opportunistic networks. A low overhead and distributed dynamic community detection strategy is presented. According to the social attribute of nodes, their belongingness is estimated dynamically. Further, the perception of the communities belongingness can restrain the spread of labeling process. Finally, the community structure in opportunistic network is detected. The simulation result is compared with other algorithms, the accuracy of detection algorithm proposed is higher than HCDA about 50%, and it has strong scalability. The algorithm is suitable for a variety of complex network scenarios.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第10期3673-3677,3738,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61001105) 重庆市教委科学技术基金项目(KJ100521)
关键词 机会网络 节点社会属性 节点归属性 标签传播 社区检测 opportunistic network node social attribute node belongingness label propagatiom community detection
  • 相关文献

参考文献11

二级参考文献129

  • 1程伟明,周新运.一个用于Ad Hoc网络的分簇方法[J].计算机学报,2005,28(5):864-869. 被引量:18
  • 2Hull B, Bychkovsky V, Zhang Y, Chen K, Goraczko M, Miu A, Shih E, Balakrishnan H, Madden S. CarTel: A distributed mobile sensor computing system. In: Proc. of the 4th Int'l Conf. on Embedded Networked Sensor Systems. Boulder: ACM, 2006. 125-138.
  • 3Pan H, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C. Pocket switched networks and human mobility in conference environments. In: Proc. of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking. Philadelphia: ACM. 2005. 244-251.
  • 4Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein D. Energy-Efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In: Proc. of the 10th Int'l Conf. on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2002.96-107. DO1=http://doi.acm.org/10.1145/605397.605408
  • 5Pelusi L, Passarella A, Conti M. Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. Communications Magazine, 2006,44(11): 134-141.
  • 6Conti M, Giordano S. Multihop ad hoe networking: The reality. Communications Magazine, 2007,45(4):88-95.
  • 7Fall K. A delay-tolerant network architecture for challenged Internets. In: Proc. of the 2003 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe: ACM, 2003.27-34.
  • 8Akyildiz IF, Akan B, Chert C, Fang J, Su W. InterPlaNetary Intemet: State-of-the-Art and research challenges. Computer Networks, 2003,43(2):75-112.
  • 9Gupta P, Kumar P. The capacity of wireless networks. IEEE Trans. on Information Theory, 2000,46(2):388-404.
  • 10Grossglauser M, Tse DNC. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. on Networking, 2002, 10(4):477-486.

共引文献376

同被引文献48

  • 1徐鑫鑫,王玲,张衡阳.无线移动Ad hoc网络移动模型研究[J].计算机应用研究,2009,26(3):804-808. 被引量:7
  • 2Newman MEJ.Communities,modules and large-scale structure in networks[J].Nature Physics,2011,8(1):25-31.
  • 3Raghavan UN,Albert R,Kumara S.Near linear time algorithm to detect community structures in large-scale networks[J].Physical Review E,2007,76(3):036106.
  • 4Lancichinetti A,Fortunato S,Kertész J.Detecting the overlapping and hie-rarchical community structure in complex networks[J].New Journal of Physics,2009,11(3):033015.
  • 5Ahn YY,Bagrow JP,Lehmann S.Link communities reveal multi-scale complexity in networks[J].Nature,2010,466(7307):761-764.
  • 6Shen H,Cheng X,Cai K,et al.Detect overlapping and hierarchical community structure in networks[J].Physica A:Statistical Mechanics and its Applications,2009,388(8):1706-1712.
  • 7Zhubing L,Jian W,Yuzhou L.An overview on overlapping community detection[C]//7th International Conference on Computer Science&Education.IEEE,2012:486-490.
  • 8Zhang Y,Han Y,Li J,et al.Community detection using maximum connection probability in opportunistic network[C]//4th International Conference on Intelligent Systems Modelling&Simulation.IEEE,2013 475-480.
  • 9Hui P,Yoneki E,Chan SY,et al.Distributed community detection in delay tolerant networks[C]//Proceedings of 2nd ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture.ACM,2007.
  • 10Xu K,Yang GH,Li VOK,et al.Detecting dynamic communities in opportunistic networks[C]//First International Conference on Ubiquitous and Future Networks.IEEE,2009:159-164.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部