期刊文献+

基于R-SVM的网络入侵检测系统 被引量:6

Intrusion detection system based on R-SVM
下载PDF
导出
摘要 入侵检测系统(IDS)在处理高维数据时具有计算量大、占用计算机资源较多、训练和预测时间较长等缺点,这就需要对数据在确保有用信息不丢失的前提下进行约简。递归支持向量机(R-SVM)根据各个特征在svm分类器中的贡献大小从分类结果中提取使分类器性能最好的特征,以实现维数约简的目的。将R-SVM理论引入入侵检测系统中,提出了一种基于R-SVM入侵检测方法。通过对KDDCUP99数据集中10Percent数据子集的测试实验结果表明,与用粗糙集做特征提取及传统的几种分类算法相比,用R-SVM做特征提取并结合SVM分类算法用于IDS中的性能较好;与使用全部特征构建的支持向量分类器相比,前者能在保障较好的分类精度的同时,降低训练和预测时间。 The intrusion detection system (II)S) has some defects in dealing with high dimensional problem, such as over loaded, occupying too much resource, long training and forecasting time. therefore, the simplify of practical information becomes such a necessity. Recursive support vector machine (R-SVM) extracts main features from the result of SVM classifier according to the different contribution in it. The R-SVM theory is applied into IDS and an intrusion detection method based on R-SVM is pro- posed. Acorrding to the 10 percent data subset of KDDCUP99 , comparing with Rough Set and various kinds of traditional clas- sification algorithms , The experimental results show that R-SVM is better than rough set, and the training and predicting time of SVM based on R-SVM is shorter than SVM based on full features, without reducing accuracy obviously.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第10期3777-3782,共6页 Computer Engineering and Design
基金 陕西省自然科学基金项目(2009JM7007) 陕西省教育厅专项科研计划基金项目(08JK354)
关键词 入侵检测系统 高维数据 约简 特征提取 递归支持向量机 支持向量机 Key words: intrusion detection system high dimensional problem reduction feature extraction recursive support vector ma-chine support vector machine
  • 相关文献

参考文献8

  • 1曾志强,高济,朱顺痣.基于约简SVM的网络入侵检测模型[J].计算机工程,2009,35(17):132-134. 被引量:7
  • 2张雪芹,顾春华,吴吉义.基于约简支持向量机的快速入侵检测算法[J].华南理工大学学报(自然科学版),2011,39(2):108-112. 被引量:6
  • 3陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 4ZHANG Xuegong, LU Xin. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data [J]. BMC Bioinformatics, 2006, 7 (1): 197-210.
  • 5邓乃杨,田英杰.支持向量机一理论、算法与拓展[M].北京:科学出版社,2009.
  • 6张学工.模式识别[M].北京:清华大学出版社,2010.
  • 7UCImachine learning repository: KDD cup 1999 dataset [EB/ OL]. [2010-01-03]. http://kdd, ics. uei. edu/databases/kdd- cup99/kddcup99, html.
  • 8CHANG Chihchung, LIN Chihien. LIBSVM: A library for support vector machines [EB/OL]. [ 2010-01-05 ]. http:// www. csie. ntu. edu. tw/-cjlin/libsvm/.

二级参考文献33

  • 1段丹青,陈松乔,杨卫平.基于SVM主动学习的入侵检测系统[J].计算机工程,2007,33(1):153-155. 被引量:19
  • 2Ghosh A K, Schwartzbard A. A Study in Using Neural Networks for Anomaly and Misuse Detection[C]//Proc. of the 8th USENIX Security Symposium. Washington D. C., USA: [s. n.], 1999.
  • 3Vapnik V. Statistical Learning Theory[M]. New York, USA: Springer, 1998.
  • 4Mukkamala S, Janoski G- Sung A H. Intrusion Detection Using Neural Networks and Support Vector Machines[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Mumbai, Maharashtra, India: [s. n.], 2002.
  • 5Downs T, Gates K E, Masters A. Exact Simplification of Support Vector Solutions[J]. Journal of Machine Learning Research, 2001, 12(2): 293-297.
  • 6Kwok J T, Tsang I W. The Pre-image Problem in Kernel Methods[J]. IEEE Transactions on Neural Networks, 2004, 15(6): 1517-1525.
  • 7Murphy P M, Aha D W. UCI Repository of Machine Learning Databases[EB/OL]. [2008-12-25]. http:i/ www.ics.uci.edu/-mlearn/MLRepository.html.
  • 8NIST Special Publication 800-31 ,Intrusion detection system [S].
  • 9Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995,20 ( 3 ) :273-297.
  • 10Chen B, Johnson M. Protein local 3D structure prediction by Super Granule Support Vector Machines (Super GSVM) [J]. BMC Bioinformatics, 2009, 10 ( Suppl 11 ) : S15.

共引文献119

同被引文献54

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部