期刊文献+

基于稀疏低秩分解的杂草种子配准

Weed seeds registration based on sparse and low-rank decomposition
下载PDF
导出
摘要 针对杂草种子识别在实际应用中的困难,提出了一种适用于杂草种子配准的稀疏低秩分解算法。阐述了稀疏低秩算法的原理和求解方法,原本有等式约束且非凸的问题可以通过求解核范式和l1范式的无约束凸优化问题得到很好的配准结果。为了验证配准工作的重要性,运用k折交叉检验对比配准前后的识别率差异。实验结果表明,基于稀疏低秩分解的配准算法能够提高杂草种子的识别率,为实际中的杂草种子识别提供了可行方案。 It is difficult to apply the weed seeds recognition method in real world. A sparse low-rank decomposition algorithm is proposed and introduced for weed seeds registration. The problem originally having equality constraints and being non-convex is obtained by solving the nuclear norm and l1 minimization problem with unconstrained condition. To verify the importance of registration, k-fold cross validation is used to compare the results. Experimental results indicate that the recognition rate based on this registration algorithm can improve the recognition rate. A practicable solution is established in the future.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第10期3959-3963,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(60975007) 陕西省自然科学基金项目(2010JQ8019) 陕西省科技计划基金项目(2010K06-15)
关键词 图像配准 稀疏低秩分解 凸优化 核范式 雅克比矩阵 k折交叉检验检验 Key words: image registration low-rank decomposition convex optimization nuclear norm Jacobian matrix k-fold cross validation
  • 相关文献

参考文献9

  • 1蔡骋,张明,朱俊平.基于压缩感知理论的杂草种子分类识别[J].中国科学:信息科学,2010,40(S1):160-172. 被引量:16
  • 2陈伏兵,杨静宇.分块PCA及其在人脸识别中的应用[J].计算机工程与设计,2007,28(8):1889-1892. 被引量:26
  • 3Learned-Miller E. Data driven image models through continuous joint alignment [J].IEEE Trans On Pattern Analysis and Ma- chine Intelligence, 2006, 28 (2): 236-250.
  • 4Cox M, Lucey S, Sridharan S, for unsupervised alignment of et al. Least squares congealing images [C]. Alaska, USA: IEEE International Conference on Computer Vision and Pattern Recognition, 2008: 1-8.
  • 5Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via con- vex optimization [C]. British Columbia, Canada, Proceedings of Neural Information Processing Systems, 2009.
  • 6Chandrasekaran V, Sanghavi S, Parrilo P A, et al. Rank-spar- sity incoherence for matrix decomposition [J]. SIAM Journal on Optimization, 2011, 21 (2): 572-596.
  • 7LIN Z C, CHEN M, MA Y, gorithms for exact recovery [R]. Illinois, USA: UIUC et al. Fast convex optimization al- of a corrupted low-rank matrix Technical Report UILU-ENG-09-2214, 2009.
  • 8Cand6s E, LI X D, MA Y, et al. Robust principal component analysis [J]. Journal of the ACM, 2011, 58 (3): 1-37.
  • 9计华,张化祥,孙晓燕.基于最近邻原则的半监督聚类算法[J].计算机工程与设计,2011,32(7):2455-2458. 被引量:7

二级参考文献59

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2徐勇,张重阳,杨静宇.基于主分量特征与独立分量特征的人脸识别实验[J].计算机工程与设计,2005,26(5):1155-1157. 被引量:9
  • 3陈伏兵,张生亮,高秀梅,杨静宇.小样本情况下Fisher线性鉴别分析的理论及其验证[J].中国图象图形学报,2005,10(8):984-991. 被引量:17
  • 4陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 5Yan Bojun,Domeniconi Carlotta.An adaptive kemel method for semi-supervised clustering[C]. 17th European Conference on Ma- chine Learning.Berlin,Germany:Springer Verlag,2006:521-532.
  • 6Zhang Huaxiang, Lu Jing. Semi-supervised fuzzy clustering: A kernel-based approach [J]. Knowledge-Based Systems, 2009,22 (6):477-481.
  • 7Ruiz Carlos,Spiliopoulou Myra,Menasalvas Ernestina. Density- based semi-supervised clustering [J]. Data Mining and Know- ledge Discovery,2010,21 (3):345-370.
  • 8Yin Xuesong,Chen Songcan,Hu Enliang,et al.Semi-supervised clustering with metric learning:An adaptive kernel method[J]. Pattern Recognition,2010,43(4): 1320-1333.
  • 9Cui Peng,Zhang Ru-Bo.A framework for semi- supervised clus- tering based on dimensionality reduction [C]. 1st International Workshop on Database Technology and Applications. Piscata- way, NJ,United States:IEEE Computer Society,2009:192-195.
  • 10Tang W, Wu J,Xiong H,et al.Enhancing semi-supervised cluste- ring: A feature projection perspective[C].13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,NY, United States:Association for Computing Machinery,2007:707-716.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部