摘要
针对杂草种子识别在实际应用中的困难,提出了一种适用于杂草种子配准的稀疏低秩分解算法。阐述了稀疏低秩算法的原理和求解方法,原本有等式约束且非凸的问题可以通过求解核范式和l1范式的无约束凸优化问题得到很好的配准结果。为了验证配准工作的重要性,运用k折交叉检验对比配准前后的识别率差异。实验结果表明,基于稀疏低秩分解的配准算法能够提高杂草种子的识别率,为实际中的杂草种子识别提供了可行方案。
It is difficult to apply the weed seeds recognition method in real world. A sparse low-rank decomposition algorithm is proposed and introduced for weed seeds registration. The problem originally having equality constraints and being non-convex is obtained by solving the nuclear norm and l1 minimization problem with unconstrained condition. To verify the importance of registration, k-fold cross validation is used to compare the results. Experimental results indicate that the recognition rate based on this registration algorithm can improve the recognition rate. A practicable solution is established in the future.
出处
《计算机工程与设计》
CSCD
北大核心
2012年第10期3959-3963,共5页
Computer Engineering and Design
基金
国家自然科学基金项目(60975007)
陕西省自然科学基金项目(2010JQ8019)
陕西省科技计划基金项目(2010K06-15)
关键词
图像配准
稀疏低秩分解
凸优化
核范式
雅克比矩阵
k折交叉检验检验
Key words: image registration
low-rank decomposition
convex optimization
nuclear norm
Jacobian matrix
k-fold cross validation