期刊文献+

一种基于社会化标注的查询扩展方法 被引量:2

An Approach of Query Expansion Based on Social Tagging
下载PDF
导出
摘要 利用互联网上的社会化标注信息来改善查询扩展效果,是目前信息检索领域的一个研究热点.根据社会化标注系统中数据的特点,提出了一种改进的加权社会化相似度算法,称作Weighted Sim-Rank(WSR)算法,用于改善查询扩展效果.WSR方法在计算标签和网页之间边的权值时,既考虑与标签和网页共现的用户数量,又兼顾到被同一标签所标注过的不同网页数.所有的实验都是在从del.icio.us网站上抽取的真实标注数据集上进行的.实验结果表明,WSR方法能够有效地衡量标签之间的相似度,与其他几种基于社会化标注的方法相比,可以获得更有用的查询扩展信息,明显地改善了查询扩展的效果. How to use the social tagging information to improve the effect of query expansion is a current re- search hotspot in the information retrieval field. In this paper, according to the data characteristics of social tagging systems, we propose a modified social similarity algorithm called " Weighted SimRank" (WSR), which is used to improve the effect of query expansion. When the edge weighted values between labels and web pages are calculated, the WSR algorithm takes into account the number of co-occurrence users with tags and web pages as well as the number of different web pages labeled by every same tag. All the experiments are carried out on a real-world annotation data set which is sampled from the website del. icio. us. The experimen- tal results show that our proposed WSR method can effectively measure the similarity of annotations. Compared to the other social-annotation-based methods, WSR produces more useful query expansion information and a- chieves better performance.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2012年第5期114-117,共4页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(60673039 60973068) 国家"863"高科技计划资助项目(2006AA01Z151) 教育部留学回国人员科研启动基金 高等学校博士学科点专项科研基金资助课题(20090041110002)
关键词 查询扩展 社会化标注 SimRank算法 标签相似度 query expansion social tagging SimRank algorithm tag similarity
  • 相关文献

参考文献8

  • 1尚书姐,王灿,朱俊彦.一种依据标签的网页摘要方法[J].计算机程,2010,36(21):260-261,264.
  • 2HOTHO A, JAESCHKE R, SCHMITZ C, et al. Infor- mation Retrieval in Folksonomies: Search and Ranking [ C ]// Proceedings of Extended Semantic Web Confer- ence, Budva, Serbia Monteneg. 2006:411 - 426.
  • 3BAO Sheng-hua, XUE Gui-rong,WU Xiao-yuan, et al. Optimizing web search using social annotations [ C ]// Proceedings of the 16th international conference on World Wide Web. Banff, Alberta, Canada. 2007:501 -510.
  • 4XU Sheng-liang, BAO Sheng-hua, CAO Yun-bo, et al. Using Social Annotations to Improve Language Model for Information Retrieval [ C ]. Lisbon, Portu- gal: The 16nd ACM CIKM Conference, 2007. 1003 - 1006.
  • 5CATTUTO C, SCHMITZ C, BALDASSARRI A, et al. Network properties of folksonomies [ J ]. AI Communi- cations, 2007, 20 (4) :245 - 262.
  • 6MEO P D, QUATTRONE G, URSINO D. Exploitation of semantic relationships and hierarchical data struc- tures to support a user in his annotation and browsing activities in folksonomies [ J ]. Information Systems, 2009, 34(6) :511 -535.
  • 7GLEN J, JENNIFER W. SimRank: A measure of structural-contextsimilarity [ C ]. Edmonton, Canada: Proceedings of SIGKDD, 2002. 538 - 543.
  • 8LU Cai-mei, HU Xiao-hua, PARK E K. Exploit the tripartite network of social tagging for web clustering [ J]. IEEE Transactions on Systems, Man and Cyber- netics, Part A (Systems and Humans) , 2011,41(5) : 840 - 852.

同被引文献36

  • 1Lin Y, Lin H F, Song J, et al. Social annotation in query expansion: a machine learning approach[C]// Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Re- trieval. New York: ACM. 2011: 405-414.
  • 2Xu Yang, Jones Gareth J F, Wang Bin. Query depend- ent pseudo-relevance feedback based on Wikipedia [C]//Proceedings of the 32nd International ACM SI- GIR Conference on Research and Development in Infor- mation Retrieval. New York: ACM, 2009: 59-66.
  • 3Lee K S, Croft W B, Allan J. A cluster-based resam-piing method for pseudo-relevance feedback [C]//Pro- ceedings of the 31st Annual International ACM SIOIR Conference on Research and Development in Information Retrieval. New York: ACM, 2008: 235-242.
  • 4Xu J, Croft W B. Improving the effectiveness of infor- mation retrieval with local context analysis [J]. ACM Trans Inform Syst, 2000, 18(1): 79-112.
  • 5Cao G, Nie J Y, Gao J, Robertson S. Selecting good expansion terms for pseudo-relevance feedback [C]// Proceedings of the 31st Annual International ACM SI- GIR Conference on Research and Development in Infor- mation Retrieval. New York.- ACM, 2008: 243-250.
  • 6Zhai Chengxiang, Lafferty J. A study of smoothing methods for language models applied to information re- trieval [J]. ACM Trans Inform Syst, 2004, 22(2).- 179-214.
  • 7Bilenko M, Basu S, Mooney R J. Integrating con- straints and metric learning in semi-supervised cluste- ring [C]//Proceedings of the Twenty-first International Conference on Machine Learning. New York, 2004: 11.
  • 8Ying Ding and Elin K.jacob.Perspectives on Social Tag- ging[J]. Journal of the American Society for Information Science and Technology,2009,(12):2388-2401.
  • 9Scott A. Golder and Bernardo A. Huberman. Usage patterns of collaborative tagging Systems[J].Journal of Information Science, 2006,32(2):198-208.
  • 10Adam Mathes. Folksonomies-Cooperative Classifica- tion and Communication Through Shared Metadata [EB/OL] .http / /www.adammathes.com/ academic / co mputer-mediated-communication/folksono-mies.ht- ml,2010-04-10.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部