期刊文献+

基于改进的遗传算法的学生成绩预测模型 被引量:7

Improved Genetic Algorithm Based Student Score Prediction Model
下载PDF
导出
摘要 针对传统的遗传算法收敛慢的问题,提出了一种改进的遗传算法并将其应用在学生成绩预测中。所采用的遗传算法改进策略包括:(1)采用实数进行编码;(2)建立个体适应值函数进行个体评价;(3)使用新的选种策略;(4)改进了杂交过程;(5)修改了入选概率小于变异概率的个体变异策略;(6)优化了算法结束条件。本文将BP神经网络和改进的遗传算法相结合构造学生成绩预测模型。实验结果表明,在误差的收敛速度以及成绩预测的准确性方面,本文提出的模型都获得了令人满意的性能。 Considering the problem of slow convergence in traditional genetic algorithm,in this paper,we proposed an improved genetic algorithm and its application in student score predicting.Our improved strategies adopted in genetic algorithms include: 1) Encoding by real number;2) Establishing individual fitness function for individual evaluation;3) Using a novel selection strategy;4) Improving the hybridization process;5) Modifying the individual variation strategy which could select individuals with lower selecting probability than variation probability;6) Optimizing end condition of the proposed algorithm.Afterwards,BP neural network are combined with the improved genetic algorithm to construct student score prediction model.The experimental results show that in the aspects of both error convergence rate and prediction accuracy,the proposed model achieves a satisfactory performance.
作者 罗永国
出处 《科技通报》 北大核心 2012年第10期223-225,共3页 Bulletin of Science and Technology
基金 2011年新世纪广西壮族自治区高等教育教改工程项目课题(2011JGA273)
关键词 遗传算法 成绩预测 归一化 BP神经网络 genetic algorithm score prediction normalization BP neural network
  • 相关文献

参考文献6

二级参考文献18

共引文献61

同被引文献70

  • 1黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 2张向阳,刘鸣.贝叶斯推理研究综述[J].心理科学进展,2002,10(4):388-394. 被引量:13
  • 3范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2003.152-157.
  • 4Agrawal R, Imielinski T. Mining association rules between sets ofitems in large databases [ J ]. ACM SIGMOD Record, 1993, 22(2): 207-216.
  • 5Houtsma M,Swami A. Set-oriented mining of association rules [ C ] //Proc of the 11th IEEE International Conference on Data Engineering.1995: 25-33.
  • 6Agrawal R, Srikant R. Fast algorithm for mining association rules[C ]//Proc of the 20th International Conference on VLDB. 1994 :487-499.
  • 7Savasere A, Omiecinski E R, Navathe SB. An efficient algorithm formining association rules in large databases [ C ] //Proc of the 21st In-ternational Conference on Very Large Database. 1995 : 432-444.
  • 8Han Jiawei, Pei Jian, Yin Yiwen. Mining frequent patterns withoutcandidate generation [ C ] //Proc of ACM SIGMOD International Con-ference on Management of Data. 2000 : 1-12.
  • 9Ng A Y, Jordan M, Weiss Y. On spectral clustering: analysis and analgorithm [ C ] //Advances in Neural Information Processing Systems.2001: 849-856.
  • 10DING S, WU Q H. Research on inverse model based on ANN and analytic method for induction motor[J]. Automation and Control, 2011, 5(4) : 356-370.

引证文献7

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部