期刊文献+

静态图像中基于多分类器的人体检测技术研究 被引量:1

Human Detection Based on Multi-classifiers in Static Image
下载PDF
导出
摘要 首先介绍Haar特征,然后介绍用于分类器训练的Adaboost算法,该方法训练的级联分类器用于人体检测时虽然具有很高的检测率,但虚警率较高.为了保持检测率,降低虚警率,在原有分类器的基础上再训练两个分类器,一个是利用头肩样本训练的分类器,另一个是利用腿部样本训练的分类器.实验证明:该方法设计的分类器在保持较高的检测率的同时其虚警率比原方法设计的分类器降低一个数量级. In this paper, we introduce Haar feature firstly, and then interpret Adaboost arithmetic which is used in training classifier. The false positive rate of this arithmetic is too high although the detecting rate is so high. In order to maintain detecting rate and reduce false positive rate, we train another two local classifiers: one is head- shoulder classifier, the other is legs classifier. The experiment shows the new method not only have high detecting rate but also can reduce false positive rate.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第10期173-176,共4页 Microelectronics & Computer
基金 中国科学院科技创新基金资助项目(A0BK001)
关键词 HAAR特征 ADABOOST 分类器 人体检测 Haar feature Adaboost~ classifier Human Detection
  • 相关文献

参考文献7

  • 1Pedro F Felzenszwalb , Daniel P Hutte-enlocher. Effi- cient matching of pictorial structures [C] // IEEE Conf. Computer Vision and Pattern Recognition. [S. L.].IEEE, 2000:66-73.
  • 2Shi J , Malik J . Normalized cuts and image segmenta- tion [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22(8) :888-905.
  • 3Yu S X , Shi J . Objeet-specfigure-ground Segregation [C]//Proc 9th Int Conf Computer Vision. 2003:734- 741.
  • 4Anuj Mohan, Constantine Papageorgiou, Tomaso Poggio. Example-based object detection in images by components [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2001,23(4) : 349-361.
  • 5Viola Paul, Jones Michael, Snow Daniel. Detecting pedestrians using patterns of motion and appearance [J] . International Journal of Computer vision, 2005, 63(2):153-161.
  • 6Collins R , LIPton A , Fujiyoshi H, et al. Algorithms for Coorperative Multi sensor Surveillanee[J] . IEEE hitemational ConfErence on Pattern Recognition, 2001, 89(10) : 1456-1477.
  • 7Paul Viola , Michael Jones J . Robust real-time object detection [J]. International Journal of Comprter vi- sion, 2001 : 558-562.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部