期刊文献+

分数阶迭代学习控制的收敛性分析(英文) 被引量:11

Convergence analysis of fractional-order iterative learning control
下载PDF
导出
摘要 本文将传统的迭代学习控制时域和频域分析方法扩展到一类针对分数阶非线性系统的分数阶迭代学习控制时域分析方法.提出了一类新的分数阶迭代学习控制框架并简化了收敛条件,且证明了常增益情况下两类分数阶迭代学习控制收敛条件的等价性问题.该讨论进一步引出了如下两个结果:分数阶不确定系统的分数阶自适应迭代学习控制的可学习区域以及理想带阻型分数阶迭代学习控制的框架.上述结果均得到了仿真验证. The classical time domain and frequency domain analysis of iterative learning control(ILC) are extended to a type of time domain analysis of fractional order iterative learning control(FOILC) for fractional order nonlinear systems.A novel FOILC scheme is proposed,which leads to simpler convergence condition.The equivalence of the above two FOILC schemes is shown for the constant learning gain cases,which leads to two further developments: the learnable domain of an adaptive FOILC for the uncertain fractional order systems,and a desirable band-stop FOILC scheme.Several examples are provided to illustrate the presented results.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第8期1031-1037,共7页 Control Theory & Applications
基金 supported by the National Natural Science Foundation of China(Nos.61075092,61104009) the Natural Science Foundation of Shandong Province(Nos.ZR2011FM011,ZR2010AM007)
关键词 迭代学习控制 分数阶微积分 非线性系统 收敛性 自适应 iterative learning control fractional calculus nonlinear systems convergence adaptiveness
  • 相关文献

二级参考文献12

  • 1Mingyu Xu,Wenchang Tan.Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion[J].Science in China Series A: Mathematics.2001(11)
  • 2C. Friedrich.Relaxation and retardation functions of the Maxwell model with fractional derivatives[J].Rheologica Acta.1991(2)
  • 3Friedrich,C.,Schiessel,H.,Blumen,A.Constitutive behavior modeling and tractional derivatives[].Advances in the Flow and Rheology of Non-Newtonian Fluids.1999
  • 4Heymans,N.Modelling non-linear and time-dependent behaviour of viscoelastic materials using hierarchical models[].Progress and Trends in Rheology V:Proceedings of the Fitth European Rheology Conference.1998
  • 5Nonnenmacher,T.F.Fractional relaxation equations for viscoelasticity and related phenomena[].Rheological Modeling:Thermodynamical and Statistical Approaches.1991
  • 6Mathai,A.M,Saxeha,R.K.The H-function with applications in statistics and other disciplines[]..1978
  • 7Fung,Y.C.Biomechanics:Mechanical properties of living tissues[]..1981
  • 8Glockle W G,Nonnenmacher T F.Fractional Integral Operators and Fox Functions in the Theory of Viscoelasticity[].Macromolecules.1991
  • 9Friedrich C H R.Relaxation and retardation functions of the Maxwell model with fractional derivatives[].Rheologica Acta.1991
  • 10Nonnenmacher T F,Metzler R.On the Riemann-Liouville fractional calculus and some recent applications[].Fractals.1995

共引文献24

同被引文献87

  • 1李仁俊,韩正之.迭代学习控制综述[J].控制与决策,2005,20(9):961-966. 被引量:39
  • 2许建新,侯忠生.学习控制的现状与展望[J].自动化学报,2005,31(6):943-955. 被引量:76
  • 3倪博溢,萧德云.MATLAB环境下的系统辨识仿真工具箱[J].系统仿真学报,2006,18(6):1493-1496. 被引量:45
  • 4赵春娜,潘峰,薛定宇.分数阶系统H_∞控制器设计[J].东北大学学报(自然科学版),2006,27(11):1189-1192. 被引量:9
  • 5USHIYAMA M. Formulation of high-speed motion pattern of a mechanical arm by trial [J]. Transactions of the Society for Instrumentation and Control Engineers. 1978, 14(8): 706 - 712.
  • 6ARIMOTO S, KAWAMURA S, MIYAZAKI F. Bettering operation of robots by learning [J]. Journal of Robotic Systems, 1984, 1(2): 123 - 140.
  • 7CASALINO G, BARTOLINI G. A learning procedure for the control of movements of robotic manipulation [C] //Proceedings of the 4th lASTED Symposium on Robotics and Automation. Amsterdam, Netherlands: lASTED, 1984: 108 - lll.
  • 8CRAIG J J. Adaptive control of manipulator through repeated trials [C] ttl'roceedings of the American Control Conference. San Diego, CA, USA: IEEE, 1984: 1566 - 1573.
  • 9YE Y Q, TAYEBI A, LIU X P. AU-pass filtering in iterative learning control [J]. Automatica, 2009, 45(1): 257 - 264.
  • 10SHEN D, CHEN H E Iterative learning control for large scale non- linear systems with observation noise [J]. Automatica, 2012, 48(3): 577 - 582.

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部