摘要
本文将传统的迭代学习控制时域和频域分析方法扩展到一类针对分数阶非线性系统的分数阶迭代学习控制时域分析方法.提出了一类新的分数阶迭代学习控制框架并简化了收敛条件,且证明了常增益情况下两类分数阶迭代学习控制收敛条件的等价性问题.该讨论进一步引出了如下两个结果:分数阶不确定系统的分数阶自适应迭代学习控制的可学习区域以及理想带阻型分数阶迭代学习控制的框架.上述结果均得到了仿真验证.
The classical time domain and frequency domain analysis of iterative learning control(ILC) are extended to a type of time domain analysis of fractional order iterative learning control(FOILC) for fractional order nonlinear systems.A novel FOILC scheme is proposed,which leads to simpler convergence condition.The equivalence of the above two FOILC schemes is shown for the constant learning gain cases,which leads to two further developments: the learnable domain of an adaptive FOILC for the uncertain fractional order systems,and a desirable band-stop FOILC scheme.Several examples are provided to illustrate the presented results.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2012年第8期1031-1037,共7页
Control Theory & Applications
基金
supported by the National Natural Science Foundation of China(Nos.61075092,61104009)
the Natural Science Foundation of Shandong Province(Nos.ZR2011FM011,ZR2010AM007)
关键词
迭代学习控制
分数阶微积分
非线性系统
收敛性
自适应
iterative learning control
fractional calculus
nonlinear systems
convergence
adaptiveness