期刊文献+

内模强化学习型模型预测控制及其在人工胰脏上的应用(英文) 被引量:6

Internal model control-enhanced learning-type model predictive control: application to artificial pancreas
下载PDF
导出
摘要 在学习型模型预测控制的框架里,迭代学习控制器被用来更新模型预测控制器的设定点.在已经发表的研究成果里,学习型模型预测控制用到的是比例型的学习率,这种学习率的学习能力有限,而且怎样设计学习增益仍然是一个开放性问题.在本文中,基于内模控制理论提出的PID型的迭代学习控制器被用来更新模型预测控制器的设定点.为了方便起见,本文提出的结合算法可称为内模强化学习型模型预测控制.本文提出的算法应用在1型糖尿病人的人工胰脏闭环控制上.仿真结果显示,本算法对比于比例学习型模型预测控制可以达到更好的收敛性能,而且对非重复干扰有很好的鲁棒性. In the framework of a learning-type model predictive control(L-MPC),an iterative learning control(ILC) is used to update the setpoint for model predictive control(MPC).In the reported studies,the L-MPC usually has a P-type ILC,which has limited learning capability and also how to design its learning gain remains an open problem.A PID-type ILC was proposed to design the learning-type setpoint for MPC based on internal model control(IMC) theory.For convenience,the proposed combination is named IMC-enhanced L-MPC.The proposed method was applied to the closed-loop control of an artificial pancreatic β-cell for type 1 diabetes mellitus(T1DM).The simulation results show that the proposed algorithm can produce superior convergence performance compared with the P-type L-MPC,and also it has excellent robustness to non-repetitive disturbances.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第8期1057-1062,共6页 Control Theory & Applications
基金 supported by the National Natural Science Foundation of China(No.61074081) the Doctoral Fund of Ministry of Education of China(No.20100010120011) the Beijing Nova Program(No.2011025)
关键词 迭代学习控制 模型预测控制 间接型迭代学习控制 内模控制 人工胰脏 1型糖尿病 iterative learning control(ILC) model predictive control indirect ILC internal model control artificial pancreas type 1 diabetes mellitus
  • 相关文献

参考文献22

  • 1UCHIYAMA M. Formation of high speed motion pattern of mechan- ical arm by trial [J]. Transactions of the Society of Instrumentation and Control Engineers, 1978, 14(6): 706- 712.
  • 2ARIMOTO S, KAWAMURA S, MIYAZAKI E Bettering operation of robots by learning [J]. Journal of Robot Systems, 1984, 1(2): 123 - 140.
  • 3CHEN Y, MOORE K, LIU J, et al. Iterative learning control and repetitive control in hard disk drive industry--a tutorial [C] IIIEEE Conference on Decision and Control. New York: IEEE, 2006:2338 - 2351.
  • 4HOU Z, XU J. Freeway traffic density control using iterative learn- ing approach [J]. Proceedings of the IEEE Intelligent Transportation Systems, 2003, 2(2): 1081 - 1086.
  • 5ZhongshengHOU,JianxinXU.Iterative learning control approach for ramp metering[J].控制理论与应用(英文版),2005,3(1):27-34. 被引量:4
  • 6LEE J, LEE K. Iterative learning control applied to batch processes: an overview [J]. Control Engineering Practice, 2007, 15(10): 1306 - 1318.
  • 7RUAN X, BIEN Z, PARK K. Decentralized iterative learning control to large-scale industrial processes for nonrepetitive trajectory track- ing [J]. IEEE Transactions on Systems, Man and Cybernetics, 2008, 38(1): 238 - 252.
  • 8晏静文,侯忠生.学习增强型PID控制系统的收敛性分析[J].控制理论与应用,2010,27(6):761-768. 被引量:13
  • 9SUN M, WANG D. Anticipatory iterative learning control for nonlin- ear systems with arbitrary relative degree [J]. IEEE Transactions on Automatic Control, 2001, 46(5): 783 - 788.
  • 10WANG Y, GAO F, DOYLE III F J. Survey on iterative learning con- trol, repetitive control and run-to-run control [J]. Journal of Process Control, 2009, 19(10): 1589 - 1600.

二级参考文献15

  • 1Jian-XinXU.Recent Advances in Iterative Learning Control[J].自动化学报,2005,31(1):132-142. 被引量:12
  • 2许建新,侯忠生.学习控制的现状与展望[J].自动化学报,2005,31(6):943-955. 被引量:77
  • 3HOU Zhong-Sheng,XU Jian-Xin.A New Feedback-feedforward Configuration for the Iterative Learning Control of a Class of Discrete-time Systems[J].自动化学报,2007,33(3):323-326. 被引量:10
  • 4H. J. Payne.Models of freeway traffic and control[].Mathematical Models of Public Systems Simulation Council Proc.1971
  • 5C. C Chien,Y. Zhang,P. A. Ioannou.Traffic density control for automated highway systems[].Automatica.1997
  • 6J. Xu.Analysis of iterative learning control for a class of nonlinear discrete_time systems[].Automatica.1997
  • 7M. Papageorgiou,A Kotsialos.Freeway ramp metering: an overview[].IEEE Trans on Intelligent Transportation Systems.2002
  • 8F. Ho,P. A. Ioannou.Traffic flow modeling and control using artificial neural networks[].IEEE Control Systems Magazine.1996
  • 9S. Arimoto,S. Kawamura,F. Miyazaki.Bettering operation of robots by learning[].Journal of Robotic Systems.1984
  • 10H. Zhang,S. G. Ritchie,R. Jayakrishnan.Coordinated traffic_responsive ramp control via nonlinear state feedback[].Transportation Research.2001

共引文献15

同被引文献88

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部