期刊文献+

非线性迭代学习控制问题的延拓修正牛顿法(英文)

A new iterative learning control algorithm of extension-updated Newton method for nonlinear systems
下载PDF
导出
摘要 对于非线性迭代学习控制问题,提出基于延拓法和修正Newton法的具有全局收敛性的迭代学习控制新方法.由于一般的Newton型迭代学习控制律都是局部收敛的,在实际应用中有很大局限性.为拓宽收敛范围,该方法将延拓法引入迭代学习控制问题,提出基于同伦延拓的新的Newton型迭代学习控制律,使得初始控制可以较为任意的选择.新的迭代学习控制算法将求解过程分成N个子问题,每个子问题由换列修正Newton法利用简单的递推公式解出.本文给出算法收敛的充分条件,证明了算法的全局收敛性.该算法对于非线性系统迭代学习控制具有全局收敛和计算简单的优点. A new algorithm based on extension method and updated Newton method with global convergence for nonlinear iterative learning control problem is proposed.Since classical Newton-type iterative learning schemes are local convergence,conditions of local convergence can be hardly satisfied in practice.In order to widen the range of convergence,extension method is introduced to iterative learning control problem.A new Newton-type iterative learning control scheme based on homotopy extension is presented,in which the initial control can be chosen arbitrarily.The solving process is subdivided to N subproblem by the new algorithm.The exchange column update Newton method is employed to solve the subproblem by simple recurrent formula.Sufficient conditions for global convergence of this algorithm are given and proved.The implementation of the new algorithm has advantage of guaranteeing global convergence and avoiding complex calculation for nonlinear iterative learning control.
作者 亢京力
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第8期1063-1068,共6页 Control Theory & Applications
基金 supported by the National Natural Science Foundation(NNSF)of China(No.61004056)
关键词 迭代学习控制 延拓法 修正Newton法 全局收敛 非线性系统 iterative learning control extension method updated Newton method global convergence nonlinear systems
  • 相关文献

参考文献12

  • 1ARIMOTO S, KAWAMURA S, MIYAZAKI E Bettering operation of robotics by learning [J]. Journal of Robotic System, 1984, 12(2):123 - 140.
  • 2XU J X, TAN Y. Linear and Nonlinear lterative Learning Control [M]. New York: Springer-Verlag, 2003.
  • 3WANG H B, WANG Y. Iterative learning control for nonliear systems with uncertain state and arbitrary initial error [J]. Journal of Control Theory amdApplications, 2011, 9(4): 541 - 547.
  • 4李俊民,王元亮,李新民.未知时变时滞非线性参数化系统自适应迭代学习控制[J].控制理论与应用,2011,28(6):861-868. 被引量:16
  • 5WIJDEVEN J V, DOVKERS T, BOSGRA O. Iterative learning con- trol for uncertain systems: robust monotonic convergence analysis [J]. Automatica, 2009, 45(10): 2383 - 2391.
  • 6PROINOV P D. General local convergence theory for a class of iter- ative process and its applications to Newton's method [J]. Journal of Complexity, 2009, 25(1): 38 - 62.
  • 7XU J X, TAN Y. On the P-type and Newton-type ILC schemes for dy- namic systems with non-affine-in-input factors [J]. Automatica, 2002, 38(7): 1237 - 1242.
  • 8LIN T, OWENS D H, HAtONEN J. Newton method based itera- rive learning control for discrete non-linear systems [J]. International Journal of Control, 2006, 79 (10): 1263 - 1276.
  • 9LIN T, OWENS D. H, HATONEN J. Monotonic Newton method based ILC with parameter optimization for non-linear systems [J]. International Journal of Control, 2007, 80(8): 1291 - 1298.
  • 10KANG J L, TANG W S, MAO Y Y. A new iterative learning control algorithm for output tracking of nonlinear systems [C] //Proceedings of the 4th International Conference on Machine Learning and Cyber- netics. Washington: IEEE, 2005, 8:1240 - 1243.

二级参考文献31

  • 1ARIMOTO S, KAWAMURA S, MIYAZAKI E Bettering operation of robotics by learning[J]. Journal of Robotic Systems, 1984, 12(2): 123 - 140.
  • 2ARIMOTO S, KAWAMURA S, MIYAZAKI E Bettering operation of robots by learning[J]. Journal of Robotic Systems, 1984, 1(2): 123 - 140.
  • 3MOORE K L. lterative Learning Control for Deterministic Sys- tems[M]. London: Springer-Verlag, 1993.
  • 4XU J X, QU Z H. Robust iterative learning control for a class of non- linear systems[J]. Automatica, 1998, 34(8): 983 - 988.
  • 5SUN M, GE S S, MAREELS I M Y. Adaptive repetitive learning control of robotic manipulators without the requirement for initial reposi- tioning[J]. IEEE Transactions on Robotics, 2006, 22(3): 563 - 568.
  • 6CHEN Y, GONG Z, WEN C. Analysis of a high-order iterative learn- ing control algorithm for tracking control of delayed repeated systems[J]. Automatica, 1998, 34(3): 345 - 353.
  • 7KUC T Y, HAN W G. An adaptive PID learning control of robot ma- nipulators[J]. Automatica, 2000, 36(5): 717 - 725.
  • 8CHEN H F, FANG H T. Output tracking for nonlinear stochastic sys- tems by iterative learning control[J]. IEEE Transactions on Automat- ica Control, 2004, 49(4): 583 - 588.
  • 9PARK B H, KUC T Y, LEE J S. Adaptive learning control of uncer- tain robotic systems[J]. International Journal of Control, 1996, 65(5): 725 - 744.
  • 10CHOI J Y, LEE J S. Adaptive iterative learning control of uncertain robotic systems[J], lEE Proceedings-Control Theory and Applica- tions, 2000, 147(2): 217- 223.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部