摘要
对具有周期性边界条件的无格点正方形基底表面分形凝聚体的形成进行了计算机模拟 .凝聚体由二种大小不同的圆盘组成 .结果表明 ,凝聚体的分形维数几乎与表面覆盖率成正比 ,其斜率随圆盘的平均直径的增大而减小 .当表面覆盖率很小时 ,分形维数几乎与圆盘的平均直径无关 ,约为 1.4 5;当表面覆盖率较大时 ,分形维数随圆盘的平均直径的增大而减小 .
The growth process of fractal aggregates, which contain two types of discs, on a two dimensional nonlattice square substrate with periodic boundary conditions is simulated. Results show that the fractal dimension increases almost linearly with the surface coverage, and its slope decreases with the increase of the mean diameter of the discs \%\%. The fractal dimension is about 1.45 and nearly independent of \%\% at very low surface coverage, but it decreases with increasing \%\% at large surface coverage.
出处
《浙江大学学报(理学版)》
CAS
CSCD
2000年第4期394-397,共4页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金!(198740 16 )
浙江省青年人才基金!(1997- RC96 0 3)