期刊文献+

Tracy-Widom F_2分布的普适性(英文) 被引量:1

The Universality of Tracy-Widom F_2 Distribution
原文传递
导出
摘要 随机矩阵理论与数学和物理中各种其他领域相联系,而与随机矩阵特征值相关的分布函数发挥着重要的作用.这篇综述主要讨论一个著名的具有普适性的分布—Tacy-WidomF2分布,它是高斯幺正系综随机矩阵最大特征值的极限分布.为了描绘它的普适性,本文列出了数学和物理中的某些模型.读者同样能看到关于这些具体模型的一些近来的结果和它们之间的关系以及研究它们的常用方法和技巧,特别是RSK对应性. It has been shown that random matrix theory is connected with various other domains of mathematics and physics, where the distribution functions related to eigenvalues of random matrices play a key role. In this survey, we focus on a celebrated universal law-Tracy- Widom F2 distribution which is the limit distribution of the largest eigenvalue of Gaussian unitary ensemble(GUE). Some certain models in mathematics and physics are also reviewed to show its universality. Readers will also find some recent results and their associations as well as some commonly used methods and techniques especially the RSK correspondence in studying those specific models.
出处 《数学进展》 CSCD 北大核心 2012年第5期513-530,共18页 Advances in Mathematics(China)
基金 supported by NSFC(No.11071258) Hunan Provincial Innovation Foundation For Postgraduate(No.CX2011B076)
关键词 Tracy—Widom F2分布 普适性 随机矩阵 RSK对应性 Tracy-Widom F2 distribution universality random matrix RSK correspondence
  • 相关文献

参考文献70

  • 1Aldous, D. and Diaconis, P., Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc., 1999, 36(4): 413-432.
  • 2Anderson G.W., Guionnet, A. and Zeitouni 0_, An Introduction to Random Matrices, Cambridge: CambridgeUniversity Press, 2009.
  • 3Bachmat, E., Berend, D., Sapir, L.,Skiena,S. and Stolyarov, N.,Analysis of aeroplane boarding via spacetimegeometry and random matrix theory, J. Phys. A: Math. Gen., 2006, 39(29): L453-L459.
  • 4Bai Z.D., Methodologies in spectral analysis of large dimensional random matrices, a review, Statistica Sinica,1999, 9(3): 611-677.
  • 5Baik, J., Limiting distribution of last passage percolation models, in: XlVth Intern. Congr. Math. Phys.(Zambrini, J.C. ed.), Lisbon, Portugal, July 28-August 2, 2003, World Scientific, 2006, 339-346.
  • 6Baik, J., Deift, P. and Johansson, K., On the distribution of the length of the longest increasing subsequenceof random permutations, J. Amer. Math. Soc., 1999,12(4): 1119-1178.
  • 7Baik, J. and Rains, E.M., Limiting distributions for a polynuclear growth model with external sources, J.Stat. Phys” 2000,100(3/4): 523-541.
  • 8Baik, J. and Rains, E.M., Algebraic aspects of increasing subsequences, Duke Math. J., 2001, 109(1): 1-65.
  • 9Baik, J. and Rains, E.M., The asymptotics of monotone subsequences of involutions, Duke Math. J., 2001,109(2): 205-281.
  • 10Baik, J. and Suidan, T.M., A GUE central limit theorem and universality of directed first and last passagesite percolation, Intern. Math. Res. Not., 2005,6: 325-337.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部