期刊文献+

算术傅立叶变换中非均匀采样点信号值的一种分段估计法 被引量:1

Space-ividing Method to Estimate Signal Values at Non equidistant Sampling Points
下载PDF
导出
摘要 提出了一种用于估计算术傅立叶变换 ( AFT)中非均匀采样点处信号值的方法 .这种方法在不影响原算法高速性及适于 VLSI实现这一特性的基础上 ,改善了 AFT算法在零阶插值时的误差 .基本原理是在两均匀采样点之间根据某种原则进行分段 ,每个分段区间赋予一个只需简单计算的值 .仿真表明 :在较少分段时 ,分段 AFT即可逼近一阶插值 AFT的误差 ,同时其误差效果也好于迭代实现的自适应 A segmentation method to estimate signal values at non equidistant sampling points was presented. Its aim is the error improvement in the 0 order arithmetic Fourier transform algorithm with a small increase on computations that even can be negligible. The simulations show that the errors in these estimation methods are very close to the errors in the 1 order interpolation estimation method that has much multiplication.
作者 李萍 胡光锐
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2000年第7期881-884,共4页 Journal of Shanghai Jiaotong University
关键词 算术傅里叶变换 非均匀采样点 信号值 分段估计 arithmetic Fourier transform (AFT) interpolation recursive algorithm
  • 相关文献

参考文献4

  • 1Tufts D W,IEEE SP,1993年,41卷,1期,152页
  • 2Reed I S,IEEE Trans Signal Processing,1992年,40卷,5期,1122页
  • 3Li W,Proc Int Conf on ASSP,1990年,1523页
  • 4Reed L S,IEEE Trans ASSP,1990年,38卷,3期,458页

同被引文献13

  • 1W. J. Walker.A summability method for the arithmetic Fourier transform[J]. BIT . 1994 (2)
  • 2Reed I S,,Shih MT,Truong TK,et al.A VLSI architecture for simplified arithmetic Fourier transform algorithm. IEEE Transactions on Signal Processing . 1992
  • 3Knockaert L.A generalized mobius transform,arithmetic Fourier transform,and primitive roots. IEEE Trans.onSignal Processing . 1996
  • 4Jullien W N.Asampling reduction for the arithmetic Fourier transform. Proc,32 nd Midwest Symposiumon Circuitsand Systems . 1990
  • 5Tufts D W,Sadasiv D.The arithmetic fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing Magazine . 1988
  • 6Reed I S,Tufts D W,Xiao Yu,et al.Fourier analysis and signal processing by use of Mobius inversion formular. IEEE Trans. on Acoust, Speech, Signal Processing . 1990
  • 7Ge Xi-Jin,Chen Nan-Xian,Chen Zhao-Dou.Efficient algorithm for 2-D arithmetic Fourier transform. IEEE Transactions on Signal Processing . 1997
  • 8Park I H,Prasanna V K.Modular VLSI architectures for computing the arithmetic Fourier transform. IEEE Transactions on Signal Processing . 1993
  • 9Wigley,N. M.,Jullien,G. A.On implementing the arithmetic Fourier transform. IEEE Transactions on Signal Processing . 1992
  • 10张宪超,徐大杰,谢幸.一种更有效的素数长度DFT快速算法[J].烟台大学学报(自然科学与工程版),2000,13(1):54-59. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部