期刊文献+

基于遗传算法收敛特性的停机准则

Stop Criterion Based on the Convergence Properties of GA
下载PDF
导出
摘要 关于遗传算法及改进遗传算法收敛问题的研究表明,理论上分析各类不同结构遗传算法的收敛性是可行的.对已被证明收敛的遗传算法,在计算过程中最突出的问题便是如何判断当前计算结果已经到达最优解从而停止迭代.文中从遗传算法收敛特点及不同种群中最优个体适应值的一致性、种群的多样性出发,提出判断算法自动停止迭代的依据. The study on the convergence problems of genetic algorithms (GA) and improved genetic al- gorithms (IGA) at present shows that it's feasible to analyze the convergence of GA with different structural models theoretically. To the GA which convergence properties had been established, the most prominent problem in calculation process was how to estimate the current calculated results had been reaching the optimal value and then stopping the iterative process of the algorithms. An auto- stop criterion based on the convergence properties of GA, the consistency of optimum individual fit- ness in different populations and the diversity of population was proposed in this paper.
作者 王辉 徐晓英
出处 《武汉理工大学学报(交通科学与工程版)》 2012年第5期1091-1094,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国防科技重点实验室基金项目资助(批准号:9140C8702050903)
关键词 遗传算法 一致性 多样性 停机准则 genetic algorithms consistency diversity stop criterion
  • 相关文献

参考文献6

二级参考文献45

  • 1任苹,高立群,王珂,李楠.基于混合粒子群优化的电网优化规划[J].东北大学学报(自然科学版),2006,27(8):843-846. 被引量:5
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3Deb K,Pratap A,Agarwal S,et al.A fast and elitist muhiobjective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation, 2002,6 ( 2 ) : 182-197.
  • 4Zitzler E,Laumanns M,Thiele L.SPEA2:improving the strength pareto evolutionary algorithm.Technical Report 103 [R].Computer Engineering and Networks Laboratory (TIK),ETH Zurich,Zurich, Switzerland,2001.
  • 5Knowles J D,Corne D W.The Pareto archived evolution strategy:A new baseline algorithm for Pareto multiobjective optimization[C]// CEC'99:Proceedings of the 1999 Congress on Evolutionary Computation.Piscataway,New Jersey:IEEE Service Center, 1999:98-105.
  • 6Come D W.The pareto envelope based selection algorithm for multiobjective optimization[C]//Schoenauer M.LNCS:Proc Parallel Problem Solving from Nature,PPSN VI,2000,1917: 839-848.
  • 7Edgeworth F Y.Mathematical Psychics [M].London,England:P Keagan, 1881.
  • 8Pareto V.Cours D'Economie Politique:volume I and II.F.Rouge, Lausanne, 1896.
  • 9Kukkonen S,Lampinen J.Comparison of generalized differential evolution algorithm to other multiobjective evolutionary algorithms[C]// Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering(ECCOMAS2004),Jyv"askyl"a, Finland,July 2004:445.
  • 10Kukkonen S,Lampinen J.An extension of generalized differential evolution for muhi-objective optimization with constraints[C]//Proceedings of the 8th International Conference on Parallel Problem Solving from Nature(PPSN VIII),Birmingham,Finland,Sept 2004: 752-761.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部