期刊文献+

基于自适应粒子群算法的动态优化

Dynamic optimization based on adaptive particle swarm optimization algorithm
原文传递
导出
摘要 自适应粒子群算法(AdaptiveParticle SwarmOptimization,APSO)是一种参数自适应的种群智能算法。该算法以种群的分布状态为依据区分优化过程中的不同状态自适应地调整算法参数。基于APSO算法具有参数自适应、快速收敛、全局搜索能力强等优点。将APSO算法应用于动态优化,通过采用按变量比例分配时间的方法构造时间变量,从而将其转化为无约束变量,通过时间变量与控制变量构造控制输入函数控制动态系统,使其达到最优。该方法提供一种转换时间变量约束的方法,使其能够作为一般优化问题,适用于其他类似演化类算法的动态性能的测试。最后,通过4个经典动态优化测试函数,比较APSO算法与蚁群算法,体现APSO算法处理动态优化的性能。 Adaptive particle swarm optimizatioin (APSO) is a swarm intelion algorithm, which regulates parameters adaptively during the optimization process according to the distribution state of the swarm particle. Due to its advantages of paramater adaptively regulating, fast converging and golbal optimizing, we apply the APSO algorithm into the dynamic optimization problems. We free the constraint of the time variable through the method of proportional dividing method, and contruct the control function combing input and time variables. Thanks to this method we change this kind of dynamic problems into a basic optimization problems, which makes them applicable to the test of other intelligence based optimization algorithms. In the end, we compare simulation result with the Ant colony algorithm which has the similar mechanism with PSO.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2012年第9期1095-1098,共4页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(61134007,60974100,60904039)
关键词 动态优化 自适应粒子群算法 控制变量参数化 反应器 dynamic optimization, APSO, control variable discretization, reactor
  • 相关文献

参考文献8

  • 1Kennedy J, and Eberhart R. Particle swarm optimization, in Neural Networks, 1995//Proceedings IEEE International Conference on, 1995, 4:1942-1948.
  • 2Zhi-Hui Z, et al. "Adaptive Particle Swarm Optimization," in Systems, Man, and Cybernetics, Part B:Cybernetics. IEEE Transactions on vol. 39, ed, 2009:1362-1381. J.
  • 3iang M, et al. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters, 2007, 102:8-16.
  • 4Zhang B C, Zhao Dezhao, Wei Xiang. Iterative ant-colony algorithm and its application to dynamic optimization of chemical process. Computers & Chemical Engineering, 2005, 29:2078- 2086.
  • 5Rajesh J G, Kapil Kusumakar, Hari Shankar, Jayaraman V K, Kutkami B D. Dynamic optimization of chemical processes using ant colony framework. Computers & Chemistry, 2001, 25:583- 595.
  • 6Luus R and Rosen O. Application of dynamic programming to final state constrained optimal control problems. Industrial & Engineering Chemistry Research, vol. 30, ed: American Chemical Society, 1991:1525-1530.
  • 7Luus R. Optimal control by dynamic programming using systematic reduction in grid size. International Journal of Control Taylor & Francis, 1990, 51:995-1013.
  • 8Dadebo S A and McAuley K B. Dynamic optimization of constrained chemical engineering problems using dynamic programming. Computers & Chemical Engineering, 1995, 19: 513-525.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部