期刊文献+

多维离散傅立叶变换神经网络函数逼近 被引量:1

Function Approximation by Multidimensional Discrete Fourier Transform Based Neural Networks
下载PDF
导出
摘要 利用多维离散傅立叶变换原理构造新颖的神经网络模型用于函数逼近 ,网络结构为分层前向网络 .给出了网络的学习算法 ,网络的大部分权值都是固定的 ,只有输出层与最后隐层之间的权值需要调节 .与其他神经网络相比 ,学习算法大为简化 ,训练速度更快 .只要隐层节点数足够多 ,网络就可以以任意精度逼近任意连续函数 .通过计算机模拟与 BP网络和模糊神经网络进行了比较 ,发现收敛速度非常快 。 A novel class of layered feedforward neural network models for function approximation was proposed based on the principle of multi dimensional discrete Fourier transform. A learning algorithm was introduced, in which most connection weights of the network are fixed, only those between the output layer and the last hidden layer are needed to be adjusted. Compared with other neural networks, the algorithm is simpler and learning speed is faster. The network can approximate any continuous function with any degree of accuracy provided its hidden nodes is as many as enough. The computer simulation shows its advanteges of fast convergence and high approximation accuracy over the back propagation (BP) network and fuzzy neural networks.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2000年第7期956-959,共4页 Journal of Shanghai Jiaotong University
关键词 神经网络 函数逼近 离散傅里叶变换 学习算法 discrete Fourier transform neural networks function approximation
  • 相关文献

参考文献6

  • 1[1] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators [J]. Neural Networks, 1989, 2(3):359~366.
  • 2[2] Sprecher D A. A universal mapping for Kolmogorov's superposition theorem [J]. Neural Networks, 1993, 6(7):1089~1094.
  • 3[3] Buckley J J, Hayashi Y. Can fuzzy neural nets approximate continuous functions [J]? Fuzzy Sets and Systems, 1994, 61(1):43~51.
  • 4[4] Pelagotti A, Piuri V. Neural spectral composition for function approximation [A]. In: Proc of IJCNN'97[C], Alaska, 1997, Ⅱ:860~864.
  • 5[5] Doderici W. Fuzzy neural networks and neurocomputations [J]. Fuzzy Sets and Systems, 1993, 56(1): 1~38.
  • 6[6] Takagi T, Sugeno M. Fuzzy identification of systems and its application for modeling and control [J]. IEEE Trans Sys, Man, Cybern, 1985, 15(1):116~132.

同被引文献10

  • 1JANCZAK A. Identification of Nonlinear Systems UsingNeural Networks and Polynomial Models: A Block-Oriented Approach, Lecture Notes in Control and Information Sciences[M]. Berlin: Springer, 2005: 16- 19.
  • 2PELAGOTTI A, PIURE V. Neural Spectral Composition for Function Approximation[C] // In Proc. IEEE-INNS Int. Joint Conf. Neural Networks IJCNN97. Houston, TX, 1997: 860- 864.
  • 3ZUO Wei. Fourier Neural Network Based on Tracking Control for Nonlinear System[D]. Hong Kong.. The Hong Kong University of Science and Technology, 2008:22 - 32.
  • 4ZUO Wei, CAI Lilong. Adaptive Fourier Neural Network Based Control for a Class of Uncertain Nonlinear Systems [J].IEEE Transactions on Neural Networks, 2008, 19 (10): 1689 - 1701.
  • 5ZUO Wei, YANG Zhu, CAI Lilong. Fourier-Neural- Network-Based Learning Control for a Class of Nonlinear Systems with Flexible Components[J].IEEE Transactions on Neural Networks, 2009, 20(01): 139-151.
  • 6ZUO Wei, CAI Lilong. A New Iterative Learning Controller Using Variable Structure Fourier Neural Network [J].IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics,2010, 40(02) : 458 - 468.
  • 7ZUO Wei, CAI Lilong. Tracking Control of Nonlinear Systems Using Fourier Neural Network[C] //Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Meehatronics. Monterey, CA, 2005 : 670 - 675.
  • 8CHEN Sheng, GRANT P M, COWAN C F N. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks [J]. IEEE Transaction on Neural Network, 1991, 2(02): 302 - 309.
  • 9LAWRYN'CZUK M. Computationally Efficient Nonlinear Predictive Control Based on Neural Wiener Model [J]. Neuro Computing, 2010(74) : 401 - 417.
  • 10YANG Huizhong, LI Jiang, DING Feng. A Neural Network Learning Algorithm of Chemical Process Modeling Based on the Extended Kalman Filter[J]. Neuro Computing, 2007(70) : 625 - 632.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部