摘要
受Hardy空间理论和Hardy-Lorentz空间的定义启发,讨论Hardy-Lorentz空间上算子的有界性问题.通过Hardy-Lorentz空间的原子表示和算子在Lp上的有界性结果,得到Marcinkiewicz积分算子是从Hardy-Lorentz空间到Lp,∞(Rn)有界的.
Motivated by the theory of Hardy spaces and the definition of Hardy-Lorentz spaces, the boundedness of operators on Hardy-Lorentz spaces are discussed. By using the atomic decomposition of Hardy-.Lorentz spaces and the results of the boundedness of operators on Lp, the boundedness oI Marcinkiewicz integral operators from certain Hardy-Lorentz spaces to Lp,∞ (Rn) spaces is obtained.
出处
《应用数学》
CSCD
北大核心
2012年第4期719-724,共6页
Mathematica Applicata
基金
Supported by the NNSF-China Grant (11041004)
the NSF of Shandong Province (ZR2010AM032)