期刊文献+

一种半线性椭圆型方程的解的可去奇点

Removable Singularities of the Solution for Semilinear Elliptic Equations
下载PDF
导出
摘要 本文处理了一种半线性椭圆型方程解的可去奇点问题,得到方程的弱解与一个定义在RN上的连续函数几乎处处相等的结论. In this paper,we have dealt with the removable singularities of the solution for a class of semilinear elliptic equations. Our main result is that the weak solution of the equation coincides with a continuous function of the open subset of RN in almost everywhere.
出处 《应用数学》 CSCD 北大核心 2012年第4期881-887,共7页 Mathematica Applicata
关键词 椭圆型方程 奇点 截断函数 Elliptic equation Singularity Truncation function
  • 相关文献

参考文献9

  • 1Brezis Haim, Veron L. Removable singularities of some nonlinear elliptic equations[J]. Archive for Rational Me-chanics and Analysis. 1980.75 : 1-6.
  • 2Vazquez J L. Veron L. Removable singularities of some strongly nonlinear elliptic equations [J]. ManscriptaMath. ,1980,33:129-144.
  • 3Brezis Haim, Nirenberg L. Removable singularities for nonlinear elliptic equations[J]. Topological Methods inNonlinear Analysis, 1997,9:201-219.
  • 4Cirstea Florica Corina, DU Yihong. Asymptotic behavior of solutions of semilinear elliptic equations near an iso-lated singularity[J]. Journal of Functional Analysis,2007,250:317-346.
  • 5Cirstea Florica Corina,DU Yihong. Isolated singularities for weighted quasilinear elliptic equations[J]. Journal ofFunctional Analysis,2010,259 : 174-202.
  • 6Mamedov F I . Harman A. On the removablity of isolated singular points for degenerating nonlinear elliptic equa-tions[J]. Nonlinear Analysis,2009,71: 6290-6298.
  • 7Bidaut Veron M F,Ponce A C, Veron L. Isolated boundary sir^ularities of semilinear elliptic equations[J]. Cal-culus of Variations and Partial Differential Equations.2011 .40: 183-221.
  • 8Del Pino M,Musso M, Pacard F. Boundary singularities for weak solutions of semilinear elliptic problems[J].Journal of Functional Analysis^2007,253:241-272.
  • 9Serrin J. Local behaviour of solutions of quasilinear equations[J]. Acta Mathematical 1964,111: 247-302.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部