期刊文献+

具有内部奇异点的微分算子自共轭域的实参数解描述 被引量:2

Characterization of Real-parameter Solutions of Domains of Self-adjoint Ordinary Differential Operators with Interior Singular Points
下载PDF
导出
摘要 本文研究一类带有内部奇异点的微分算子的自共轭域.通过构造相应的直和空间,应用直和空间的相关理论及对相应最大算子域进行分解,在直和空间上生成的相应最小算子具有实正则型域的情形下,利用微分方程的实参数解给出此类算子的自共轭域的完全解析描述,并且确定其边界条件的矩阵仅由微分方程的解在正则点的初始值决定. :In this paper a class of symmetric differential operators which have finite inte- rior singular points are investigated. For the purpose we constructed a direct sum space. By the theory of direct sum space and the decomposition of the corresponding maximal domain, we give the complete and analytic characterization for self-adjoint domains of symmetric dif- ferential expressions by means of the real-parametersolutions of equation τ(y) = λ0y with λ0 ∈П(To (τ)) ∩ R. T0(τ) is the corresponding minimal operator generated on the direct sum space. And the matrix defined the boundary conditions is only determined by the initial values of the regular points of the solutions.
出处 《应用数学》 CSCD 北大核心 2012年第4期936-942,共7页 Mathematica Applicata
基金 国家自然科学基金资助项目(10961019)
关键词 微分算子 内部奇异点 实参数解 正则型域 Differential operator Interior singular point Real-parameter solution Regu-larity domain
  • 相关文献

参考文献16

  • 1Dunford N,Schwartz J T. Linear Operators[M]. Part II. New York,London: Interscience Pub. .1963.
  • 2Everitt W N,Zetd A. Generalized symmetric ordinary differential expressions I: The general theory [J].Nieuw Archief voor Wiskunde, 1979(3) : 363-397.
  • 3Everitt W N-Kumar V A. On the Titchmarsh-Weyl theory of ordinary differential expressions I: Thegeneral theory[J]. Nieuw Archief voor Wiskunde.1976(3) : 1-48.
  • 4SUN Jiong. On the self-adjoint extensions of symmetric ordinary differential operators with middle defi-ciency indices[J]. Acta. Math. Sinda,New Series. 1986 ,2(2) : 152-167.
  • 5王爱平,孙炯,高鹏飞.具有正则型点的奇异微分算子的自共轭扩张[J].应用数学学报,2010,33(4):632-639. 被引量:5
  • 6王爱平,孙炯,ZettlA. Characterization of domains of self-adjoint ordinary differential operators[J]. Jour-nal of Differential Equations.2009 ,246 : 1600-1622.
  • 7Weidmann J. Spectral theory of ordinary differential operators[J]. Lecture Notes Math.,1987,1258 : 16-22.
  • 8尚在久,朱瑞英.(一吣,00)上对称微分算子的自共轭域[J].内蒙古大学学报:自然科学版,1986,17(1):17-28.
  • 9曹之江.自伴常微分算子的解析描述.内蒙古大学学报:自然科学版,1987,18(3):393-401.
  • 10Evans W D,Sobhy E I. Boundary Conditions for General Ordinary Differential Operators and Their Ad-joints[G]//Proceedings of the Royal Society of Edinburgh. 1990,114A:99-117.

二级参考文献8

共引文献9

同被引文献19

  • 1杨传富,杨孝平,黄振友.m个微分算式乘积的自伴边界条件[J].数学年刊(A辑),2006,27(3):313-324. 被引量:5
  • 2曹之江 刘景麟.奇异对称常微分算子的亏指数理论[J].数学进展,1983,12(3):161-178.
  • 3孙炯,王忠.线性算子谱分析.北京:科学出版社,2005.
  • 4CAO Zhijiang,SUN Jiong,Edmunds D E. On self-adjointness of the products of two second-order differ-ential operators[J]. Acta. Math. Sinica:English Series, 1999,15 :375-386.
  • 5Kauffman R M. Factorization and the friedrichs extension of ordinary differential operators[G]//LectureNotes in Mathematics, Vol. 1032. Berlin/New York: Springer-Verlag, 1982.
  • 6Naimark M A. Linear Differential Operators[M]. Parts I and II. New York:Frederick Ungar PublishingCo. ,1967 and 1968.
  • 7Everitt W N, Giertz M. On the deficiency indices of powers of formally symmetric differential expressions[G]//Lecture Notes in Math. , Volume 1032. Berlin/New York: Springer-Verlag,1982.
  • 8Kauffan R M, Read T, Zettl A. The deficiency index problem of powers of ordinary differential expres-sionsCG]//Lecture Notes in Math.,Volum 621. Berlin/New York:Springer-Verlag,1977.
  • 9Race D,Zettl A. On the commutativity of certain quasi-differential expression(I) [J], J. Lomdon Math.Soc. ,1990,42:489-504.
  • 10SUN Jiong. On the self-adjoint extentions of symmetric ordinary differential operators with middle defi-ciency indices[J]. Acta. Math. Ematica Sinica:New Series, 1986,2(2) : 152-167.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部