期刊文献+

磷脂酰肌醇3激酶/蛋白激酶B通过上调内皮型一氧化氮合酶参与远端缺血后处理的脑保护作用 被引量:2

Phosphoinositide-3 kinase/protein kinase B pathway participates in the neuroprotection of remote ischemic postconditioning by up-regulating endothelial nitric oxide synthase
原文传递
导出
摘要 目的 探讨内皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)及磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol-3 kinase/protein kinase B,PI3K/Akt)通路在远端缺血后处理(remote ischemic postconditioning, RIPoC)减少大鼠全脑缺血/再灌注(ischemia/reperfusion, I/R)损伤中的作用。方法 成年雄性SD大鼠100只,体重为200 g~250 g,按随机数字表法随机分为5组(每组20只):假手术组(S组)、缺血/再灌注组(I/R组)、缺血/再灌注+远端缺血后处理组(I/R+RIPoC组)、左旋硝基精氨酸甲酯(L-NAME)+缺血、再灌注+远端缺血后处理组(L-NAME+I/R+RIPoC组),以及LY294002+缺血、再灌注+远端缺血后处理组(LY+I/R+RIPoC组)。采用四动脉阻断法建立大鼠全脑I/R模型。S组不制备全脑I/R模型;I/R+RIPoC组、L-NAME+I/R+RIPoC组及LY+I/R+RIPoC组于再灌注开始行双侧股动脉缺血15 min,再灌注15 min,共3个循环。L-NAME+I/R+RIPoC组于脑缺血前10 min腹腔注射非选择性一氧化氮合酶(nitric oxide synthase, NOS)抑制剂L-NAME,LY+I/R+RIPoC组于脑缺血前10 min侧脑室注射PI3K特异性抑制剂LY294002。脑再灌注48 h时行海马CA1区NDA原位末端缺口标记技术(terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, TUNEL)阳性细胞计数,测定海马CA1区抗磷酸化的eNOS抗体(p-eNOS)、eNOS、p-Akt及Akt的蛋白水平,再灌注4 d时行Morris水迷宫实验,再灌注7 d时计算海马CA1区神经元密度。结果 与S组比较,I/R组、I/R+RIPoC组、L-NAME+I/R+RIPoC组及LY+I/R+RIPoC组再灌注时海马CA1区凋亡细胞[(0.8±0.8)、(84.7±6.8)、(52.8±7.8)、(74.3±9.0)、(79.5±7.3)个/mm]增加(P〈0.01),行为学损伤增加(P〈0.01),神经元密度[(193±7)、(10±7)、(91±11)、(38±7)、(26±7)个/mm]降低(P〈0.01)。与I/R组比较,I/R+RIPoC组再灌注时凋亡细胞减少(P〈0.01),行为学损伤减少(P〈0.01),神经元密度增加(P〈0.01)。与I/R+RIPoC组比较,L-NAME+I/R+RIPoC组及LY+I/R+RIPoC组再灌注时凋亡细胞增加(P〈0.01),行为学损伤增加(P〈0.01),神经元密度降低(P〈0.01)。L-NAME能够抑制RIPoC后p-eNOS(0.48±0.03、0.23±0.04)和eNOS(0.91±0.07、0.64±0.06)的升高(P〈0.01),LY294002不仅能抑制RIPoC后p-Akt(0.74±0.06、0.44±0.04)的升高(P〈0.01),而且能抑制RIPoC后p-eNOS(0.48±0.03、0.23±0.04)和eNOS(0.91±0.07、0.63±0.06)的升高(P〈0.01)。结论 RIPoC能够减轻大鼠全脑I/R损伤,其作用机制与PI3K/Akt途径介导的eNOS激活和上调有关。 Objective To investigate the roles of endothelial nitric oxide synthase(eNOS) and phosphatidylinositol-3 kinase/protein kinase B(PI3K/Akt) pathway in the neuroprotection of remote ischemic postconditioning (RIPoC) on global cerebral ischemia/reperfusion (I/R) injury in rats. Methods One hundred male adult SD rats weighing 200 g -250 g were randomly divided into 5 groups (n=20 each): group sham, group I/R, group I/R+RIPoC, group L-NAME+I/R+RIPoC, group LY+I/R+RIPoC. Global cerebral I/R was induced by four-vessel occlusion. Group I/R+RIPoC, group L-NAME+I/R+RIPoC and group LY+I/R+RIPoC received 3 cycles of 15 min ischemia in bilateral femoral arteries at the beginning of cerebral reperfusion followed by 15 min reperfusion. The group L-NAME+I/R+RIPoC:4-VO with coinjection of N-nitro-L-arginine methyl eater(L-NAME), 5 mg/kg, in normal saline, intraperitoneslly, 10 min before 4-VO, then followed by RIPOC and 48 h and 7 d of reperfusioin. The group LY+I/R+RIPoC:I/R+RIPoC with injection of LY294002(a highly selective inhibitor of PI3K, LY, 10 uL, 10 mol/L,in 3% DMSO,intracerebroventricularly, 10 min before 4-VO), then followedby RIPOC and 48 h and 7 d of reperfusion. The rats were sacrificed at 48 h of cerebral reperfusion, and brains were removed for determination of neuronal apoptosis [by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method] in hippocampal CA1 region and p-eNOS, eNOS, p-Akt and Akt expression (by Western blot) in hippocampal CA1 region. Morris water maze task was used to test the learning and memory function at 4 d of cerebral reperfusion, and the rats were sacrificed at 7 d of cerebral reperfusion, and brains were removed for determination of neuronal density in hippocampal CA1 region. Results Compared with group sham, the number of apoptotic neurons in CA1 region [(0.8±0.8), (84.7±6.8), (52.8±7.8), (74.3±9.0), (79.5±7.3)/mm] increased (P〈0.01), learning and memory function decreased (P〈0.01) and neuronal density in CA1 region[ (193±7), (10±7), (91±11), (38±7), (26±7)/mm]decreased (P〈0.01) in group I/R, I/R+RIPoC, L-NAME+I/R+RIPoC and LY+I/R+RIPoC. RIPoC significantly attenuated these cerebral I/R-induced changes in apoptotic neurons (P〈0.01), learning and memory function (P〈0.01) and neuronal density (P〈0.01). Pre-administration of N(ω)-nitro-l-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) significantly abolished the neuroprotective effect of RIPoC, and significantly attenuated the RIPoC induced up-regulation of p-eNOS (0.48±0.03, 0.23±0.04) and eNOS (0.91±0.07, 0.64±0.06) in CA1 region (P〈0.01). Moreover, pre-administration of LY not only significantly reversed the RIPoC induced neuroprotective effect and up-regulation of p-Akt(0.74±0.06, 0.44±0.04)in CA1 region, but also obviously inhibited the RIPoC induced up-regulation of both p-eNOS (0.48±0.03, 0.24±0.04) and eNOS (0.91±0.07, 0.63±0.06) in CA1 region (P〈0.01). Conclusions RIPoC protects the brain against global cerebral I/R injury and that this neuroprotection is mediated by up-regulation and activation of eNOS through the PI3K/Akt pathway.
出处 《国际麻醉学与复苏杂志》 CAS 2012年第10期668-673,共6页 International Journal of Anesthesiology and Resuscitation
关键词 再灌注损伤 远端缺血后处理 一氧化氮合酶 磷脂酰肌醇3激酶/蛋白激酶B Reperfusion injury Brain Remote ischemic postconditioning, Nitric oxide synthase Phosphatidylinositol-3 kinase/protein kinase B
  • 相关文献

参考文献18

  • 1Lee JM, Grabb MC, Zipfel GJ, et al. Brain tissue responses to ischemia. J Clin Invest, 2000, 106(6): 723-731.
  • 2Ren C, Yan Z, Wei D, et al. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res,2009, 1288(1): 88-94.
  • 3Brown GC. Nitric oxide and neuronal death. Nitric Oxide, 2010, 23(3): 153-165.
  • 4Liu HQ, Li WB, Li Q J, et al. Nitric oxide participates in the induction of brain ischemic tolerance via activating ERK1/2 signaling pathways. Neurochem Res, 2006, 31 (7) : 967-974.
  • 5Scorziello A, Santillo M, Adornetto A, et al. NO-induced neuroproteetion in ischemie preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J Neurochem, 2007, 103(4): 1472-1480.
  • 6Chen CA, Wang TY, Varadharaj S, et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature, 2010, 468(7327): 1115-1118.
  • 7Liu X, Chen H, Zhan B, et al. Attenuation of reperfusion injury by renal ischemic postconditioning: the role of NO. Biochem Biophys Res Commun, 2007, 359(3): 628-634.
  • 8Yuan Y, Guo Q, Ye Z, et al. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res, 2011, 1367(1): 85-93.
  • 9Wang JY, Shen J, Gao Q, et al. Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke, 2008, 39(3): 983-990.
  • 10Sun XC, Li WB, Li QJ, et al. Limb isehemie preconditioninginduces brain ischemic tolerance via p38 MAPK. Brain Res, 2006, 1084(1 ) : 165-174.

共引文献38

同被引文献20

  • 1Grech ED, Ramsdale DR. Termination of reperfusion arrhyth- mia by coronary artery occlusion. Br Heart J, 1994, 72 (1)..94- 95.
  • 2ZHAO ZQ, CORVERAJS, HALKOSME, et al. Inhibition ofmyo cardialinjury by ischemic postc0nditioning during reperfusion: comparison with ischemic preconditioning. Am Jphysiol HeartCir- cPhysiol,2003,285 (2) : H 579-H 588.
  • 3Zhao ZQ,Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion : compari- son with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2003,285 (2) : 579-588.
  • 4Downward J. Mechanisms and consequences of activation of pro- tein kinaseB/Akt. Curr Opin Cell Biol, 1998,10 ( 2 ) : 262-267.
  • 5Scheid MP,Woodgett JR. Unraveling the activation mechanisms of protein kinase B/Akt. FEBS Lett, 2003,546 ( 1 ) : 108-112.
  • 6Xing B ,Chen H,Zhang M, et al. Ischemic post-corditioning protects brain and reduces inflammation in a rat model of focal cerebral ischemia/reperfusion. J Neurochem, 2008, 105 (5): 1737-1745.
  • 7Abas F, Alkan T, Goren B, et al. Neuroprotcetive effects of postconditioning on lipid peroxidation and apoptosis after focal cerebral ischemia/reperfusion injury in rats. Turk Neurosurg,2()10,20(1):1—8.
  • 8Philipp SD, Downey JM, Cohen MV, Postconditioning must be initi- ated in less than 1 minute following reperfusion and is de- pendent on adeno- sine receptors and P13-kinase. Circulation, 2004,110 ( suppl HI ) : 803.
  • 9Tsang A, Hausenloy DJ, Moeanu MM,et al. (2004) Postcondi- tioning: a form of "modified reperfusion" protects the myocardi- um by aetivating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res,2004,95(3) :230-232.
  • 10Yang XM, Downey JM, Cohen MV. Postconditioning's protec- tion is not dependent on circulating blood factors or cells but re- quires P13-kinase and guanylyl eyclase activation. Circulation, 2004,110(1) : III-168.

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部