期刊文献+

氧化胁迫对酿酒酵母NAD(H)激酶突变体呼吸链活性的影响 被引量:1

The influence of oxidative stress on the respiratory chain activity of Saccharomyces cerevisiae NAD(H) kinase mutant
原文传递
导出
摘要 【目的】了解酿酒酵母线粒体NAD(H)激酶Pos5p对呼吸链活性的维持是否与其抗氧化功能有关。【方法】比较在不同类型的氧化胁迫试剂作用下,野生菌BY4742、POS5基因缺失体pos5Δ及其回补体pos5Δ/POS5-YEp的呼吸链各个酶复合体的活性变化及细胞内活性氧水平变化。【结果】在非胁迫条件下,pos5Δ的各个复合体活性明显低于BY4742,而pos5Δ/POS5-YEp的活性有所恢复,这与它们的胞内活性氧水平相一致。在甲萘醌胁迫下,BY4742和pos5Δ的各个复合体活性都发生不同程度的下降,但pos5Δ/POS5-YEp的活性都升高。在H2O2、马来酸二乙酯胁迫下,除个别复合体外,BY4742、pos5Δ和pos5Δ/POS5-YEp的呼吸链复合体活性都降低,尤以pos5Δ的活性降低最为严重,BY4742的活性降低则较少,而pos5Δ/POS5-YEp在H2O2胁迫下的活性降低得到了缓解。说明甲萘醌、H2O2和马来酸二乙酯胁迫会造成酿酒酵母呼吸链各个复合体发生损伤,而过表达Pos5p则有助于缓解甲萘醌和H2O2引起的损伤。【结论】Pos5p对呼吸链的作用与其抗氧化功能有相关性。 [Objective] To realize the relationship between respiratory maintenance and anti-oxidative function of Pos5p, the mitochondrial NAD(H) kinase in Saccharomyces cerevisiae. [Methods] The respiratory chain activity and reactive oxygen species (ROS) level of wild-type BY4742, POS5 gene deletion mutant pos5Δ, and pos5Δ containing POS5-YEplac195 plasmid (pos5Δ/POS5-YEp) under exposure to different kinds of oxidative reagents were compared. [Results] At the normal growth condition, pos5Δ exhibited poorer respiratory chain activity than that of BY4742, while pos5Δ/POS5-YEp gave the partial restored activity, consistent with the ROS level of these three strains. Under the oxidative stress of menadione, the respiratory chain activities of BY4742 and pos5Δ decreased, while that of pos5Δ/POS5-YEp increased. Under the oxidative stress of H2O2 and diethyl maleate, nearly all of the activities of BY4742, pos5Δ and pos5Δ/POS5-YEp reduced, with that of pos5Δ most seriously, and that of pos5Δ/POS5-YEp under H2O2 lessened. Thus indicated that the oxidative stress would injury the respiratory chain complex of S. cerevisiae and over-expression of Pos5p could alleviate the injury from menadione and H2O2. [Conclusion] The protecting function of Pos5p on respiratory chain was correlated to its antioxidative defense function.
出处 《微生物学通报》 CAS CSCD 北大核心 2012年第10期1371-1378,共8页 Microbiology China
基金 国家自然科学基金项目(No.30770019 30870056)
关键词 酿酒酵母 氧化胁迫 NAD(H)激酶 呼吸链活性 活性氧 Saccharomyces cerevisiae Oxidative stress NAD(H) kinase Respiratory chain activity Reactive oxygen species
  • 相关文献

参考文献14

  • 1Hohmann S, Mager WH. Yeast stress responses[M]. Springer: Verlag Berlin Heidelberg, 2003: 241-303.
  • 2Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae[J]. Yeast, 1998, 14(16): 1511-1527.
  • 3Miyagi H, Kawai S, Murata K. Two sources of mi- tochondrial NADPH in the yeast Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2009, 284(12): 7553-7560.
  • 4孙明娣,史锋,王小元.酿酒酵母NAD(H)激酶Pos5p在细胞抵抗氧化胁迫中的作用[J].微生物学通报,2010,37(12):1740-1746. 被引量:3
  • 5Feng Shi,Zhijun Li,Mingdi Sun,Yongfu Li.Role of mitochondrial NADH kinase and NADPH supply in the respiratory chain activity of Saccharomyces cerevisiae[J].Acta Biochimica et Biophysica Sinica,2011,43(12):989-995. 被引量:2
  • 6Shi F, Kawai S, Mori S, et al. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae[J]. FEBS Journal, 2005, 272(13): 3337-3349.
  • 7Boldogh IR, subfractionation Saccharomyces Pon LA. Purification of mitochondria from the Biology, 2007, 80 cerevisiae[J]. Methods 45-64. and yeast Cell.
  • 8Lemaire C, Dujardin G. Preparation of respiratory chain complexes from Saccharomyces cerevisiae wild-type and mutant mitochondria: activity measurement and subunit composition analysis[J].
  • 9Kirby DM, Thorburn DR, Turnbull DM, et al. Biochemical assays of respiratory chain complex activity[J]. Methods Cell Biology, 2007, 80: 93-119.
  • 10Armstrong JS, Whiteman M. Measurement of reactive oxygen species in cells and mitochondria[J]. Methods Cell Biology, 2007, 80: 355-377.

二级参考文献17

  • 1王明星,李寅,方芳,华兆哲,陈坚.添加甲萘醌促进嗜热子囊菌合成过氧化氢酶[J].过程工程学报,2005,5(3):337-340. 被引量:10
  • 2Chiou T J, Tzeng WF. The roles of glutathione and antioxidant enzymes in menadione-induced oxidative stress. Toxicology, 2000, 154(1/3): 75-84.
  • 3Miyagi H, Kawai S, Murata K. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J Biol Chem, 2009, 284(12): 7553-7560.
  • 4Outten CE, Culotta VC. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J, 2003, 22(9): 2015-2024.
  • 5Shi F, Kawai S, Mori S, et al. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. FEBS, 2005, 272(13): 3337-3349.
  • 6Wach A, Brachat A, Alberti-Segui C, et al. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast, 1997, 13(11): 1065-1075.
  • 7Liu L, Li Y, Du G, et al. Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production. Appl Microbiol Biotechnol, 2006, 72(2): 377-385.
  • 8Nguyen-nhu NT, Knoops B. Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicology Letters, 2002, 135(3): 219-228.
  • 9Hohmann S, Mager WH, eds. Yeast Stress Responses. Berlin Heidelberg: Springer-Verlag, 2003:241 256.
  • 10Turrens JF. Mitochondrial formation of reactive oxygen species. JPhysiol, 2003, 552(2): 335-344.

共引文献3

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部