期刊文献+

锆粉空气预混物多管喷射燃烧的火焰温度特征 被引量:5

Flame Temperature Characteristics of Multi-Tube Injection Combustion of Zirconium-Air Cloud Mixtures
下载PDF
导出
摘要 在自行设计的粉尘云连续吹喷预混燃烧实验系统上,对锆粉云喷射火焰的温度特性开展研究,分析了锆粉云喷射火焰的火焰发射率和温度场分布.采用点温度和场温度相结合的方法得到328.48,g/m3、410.35,g/m3和483.59,g/m33种质量浓度锆粉云喷射火焰的发射率分别为0.20、0.19和0.18,火焰最高温度可分别达到2,147.5,℃、2,248.1,℃、2,377.8,℃.同时发现沿火焰轴向高度上,火焰温度呈升高—降低—小幅回升趋势,温度回升发生在火焰间歇区,最高温度出现在火焰下部距燃烧器出口约5,cm处. The flame temperature characteristics of multi-tube injection combustion of zirconium-air cloud mixtures were investigated by means of self-designed experimental system of continuance spray combustion of premixing dust cloud. The flame emissivity and the temperature distribution of spray flame of zirconium-air cloud mixtures were analyzed by comparing point temperature with area temperature. The analytical results indicate that the flame emissivity of zirconium-air cloud mixtures with the dust concentration of 328.48 g/m3, 410.35 g/m3, 483.59 g/m3 is 0.20, 0.19 and 0.18, respectively, and the maximum flame temperature is 2 147.5℃, 2248.1 ℃ and 2377.8 ℃, respectively. Experiments also show that the tendency of flame temperature towards the central axis of flame is increase-decrease-slight increase, the slight increase of flame temperature occurrs in the flame intermission area, and the maximum flame temperature occurs at the place about 5 cm centimeters from the outlet of combustion device.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2012年第5期448-455,共8页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(50976110)
关键词 锆粉云 喷射燃烧 火焰温度 发射率 zirconium dust cloud injection combustion flame temperature emissivity
  • 相关文献

参考文献21

  • 1Kuo K K, Summerfield M. Fundamentals of Solid Pro- pellant Combustion[M]. New York- Progress in Astro- nautics and Aeronautics, 1984.
  • 2Hertzberg M, Zlochower I A, Cashdollar K L. Metal dust combustion, explosion limits, pressures and tem- peratures[C]// 24th Symposium(Int) on Combustion. Pittsburgh, 1992: 1827-1835.
  • 3Seshadri K, Berlad A L, Tangirala V. The structure of premixed particle-cloud flames[J]. Combustion and Flame, 1992, 89(3/4): 333-342.
  • 4Han 0 S, Yashima M, Matsuda T, et al. A study offlame propagation mechanisms in lycopodium dust clouds based on dust particles behavior[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3) : 153-160.
  • 5Sun J H, Dobashi R, Hirano T. Concentration profile of particles across a flame propagating through an iron par- ticle cloud[J].Combustion and Flame, 2003 , 134(4): 381-387.
  • 6Sun J H, Dobashi R, Hirano T. Combustion behavior of iron particles suspended in ai[J]. Combusion Science and Technology, 2000, 150: 99-114.
  • 7Bidabadi M, Haghiri A, Rahbari A. Mathematical modeling of velocity and number density profiles of par- ticles across the flame propagation through a micro-iron dust cloud [J]. Journal of Hazardous Materials, 2010, 176: 146-153.
  • 8Haghiri A, Bidabadi M. Dynamic behavior of particles across flame propagation through micro-iron dust cloud with thermal radiation effect[J]. Fuel, 2011, 90: 2413-2421.
  • 9Dreizin E L, Hoffmann V K. Constant pressure combus- tion of aerosol of coarse magnesium particles in micro- gravity[J]. Combustion and Flame, 1999, 118(1/2) : 262-280.
  • 10Sun J H, Dobashi R, Hirano T. Structure of flames propagating through aluminum particles cloud and com- bustion process of particles[J].Journal of Loss Preven- tion in the Process Industries, 2006, 19: 769-773.

二级参考文献40

  • 1Chen J L, Dobashi R, Hirano T. Mechanisms of flame propagation through combustible particle clouds. J Loss Prevent Proc, 1996, 9: 225-229.
  • 2Han O S, Yashima M, Matsuda T, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles' be- havior. J Loss Prevent Proc, 2001, 14:153-160.
  • 3Ou-Sup H, Masaaki Y, Toei M, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct. J Loss Prevent Proc, 2000, 13:449-457.
  • 4Seshadri K, Berlad A L, Tangirala V. The structure of premixed particle-cloud flames. Combust Flame, 1992, 89:333-342.
  • 5Sun J H, Dobashi R, Hirano T. Combustion behavior of iron particle suspended in air. Combust Sci Technol, 2000, 150:99 114.
  • 6Sun J H, Dobashi R, Hirano T. Concentration profile of particles across a flame propagating through an iron particle cloud. Combust Flame, 2003, 134:381-387.
  • 7Sun J H, Dobashi R, Hirano T. Structure of flames propagating through aluminum particles cloud and combustion process of particles. J Loss Prevent Proc, 2006, 19:769-773.
  • 8Chemenko E V, Rozenband V I, Batzykin V V. Study of zirconium ignition regularities in oxygen under pressure. Combust Explo Shock+, 1979, 15:475-477.
  • 9Gol'dshleger U I, Makarova EA, Rozenband V I. Trends in the ignition and combustion of zirconium.Combust Explo Shock+, 1977, 13: 257-260.
  • 10Karpova N E, Goncharov E P, Kochetov O A. Critical conditions for self-ignition of magnesium and zirconium powders. Combust Explo Shock+, 1986, 22:15-17.

共引文献73

同被引文献30

  • 1林振汉.氧化锆材料的特性及在结构陶瓷中的应用和发展[J].稀有金属快报,2004,23(6):6-10. 被引量:30
  • 2刘小滨,M.赫茨贝格,K.L凯什多勒.粉尘爆炸知识介绍[J].防爆电机,1994(1):42-50. 被引量:2
  • 3熊炳昆.锆粉的制备与应用[J].稀有金属快报,2005,24(10):45-47. 被引量:12
  • 4B.勒斯特曼.锆[M].北京:中国工业出版社,1965.26.
  • 5蒲永平.功能材料的缺陷化学[M].北京:化学工业出版社,2007.
  • 6Doyle W L, Conway J B, Grosse A V. The combustion of zirconium in oxygen[J]. Journal of Inorganic and Nuclear Chemistry, 1958,6(2):138- 142.
  • 7Ewald K H, Anselmi-Tamburini U, Munir Z A. Combustion of zirconium powders in oxygen [J]. Materials Science and Engineering, 2000,291 ( 1 - 2) : 118 - 130.
  • 8Badiola C, Dreizin E L. Combustion of micron-sized particles of titanium and zirconium[J]. Proceedings of the Combustion Institute, 2013,34(2) :2237 - 2243.
  • 9F.A.威廉斯.燃烧理论[M].北京:科学出版社,1985.
  • 10工藤微一,笛木和雄.固体离子学[M].董治长,译.北京:北京工业大学出版社,1992.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部