期刊文献+

阴影集的模糊支持向量机样本选择方法 被引量:5

Shadowed sets-based sample selection method for fuzzy support vector machine
下载PDF
导出
摘要 样本选择可以提高模糊支持向量机训练速度并在一定程度上提高其抗噪能力,但存在有效样本选择困难和选样率高的问题,利用阴影集对模糊集的分析能力,提出一种新的基于阴影集的模糊支持向量机样本选择方法,将模糊集合划分为可信任、不可信任及不确定3个子集,仅在可信任和不确定子集中选样,并分别采用子空间样本选择和边界向量提取的方法选样.实验结果表明,该方法在保持分类器泛化能力的前提下可以有效降低选样率和训练时间.因该方法去除了样本中的不可信任数据,所以当训练样本中含有噪声时,还可以有效提高分类器的分类性能. Sample selection can speed up the training of Fuzzy Support Vector Machine(SVM). However, it is difficult to select effective sample and the selection ratio is very high. This paper proposes a new sample se- lection method for Fuzzy SVM based on shadowed sets. We divide the fuzzy sets into three subsets, i.e. trust- able data sets, trustless data sets and uncertain data sets. The samples are only selected in trustable data sets and uncertain data sets by using the subspace selection algorithm and the border vector extraction method re- spectively. Experimental results show that the training time and selection ratio ~is significantly reduced without any decrease in generalization ability by using the samples chosen by the proposed method. Furthermore, it improves the prediction performance of the classifiers when the data sets contain noises.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第9期78-84,共7页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61175027)
关键词 模糊支持向量机 样本选择 阴影集 fuzzy support vector machine sample selection shadowed sets
  • 相关文献

参考文献20

  • 1LEE J. Measurement of machine performance degrada- tion using a neural network model [ J]. Computers in Industry, 1996, 30(3) : 193 -209.
  • 2郭磊,陈进.设备性能退化评估与预测研究综述[J].振动与冲击,2008,27(S):139-142.
  • 3VENKATASUBRAMANIAN V, RENGASWAMY R, YIN K, et al. A review of process fault detection and di- agnosis part I : quantitative model-based methods [ J ]. Computers and Chemical Engineering, 2003, 27 ( 3 ) : 293 -311.
  • 4柴天佑,丁进良,王宏,苏春翌.复杂工业过程运行的混合智能优化控制方法[J].自动化学报,2008,34(5):505-515. 被引量:89
  • 5吕琛 ,王桂增 ,张泽宇 .PWM VLSI Neural Network for Fault Diagnosis[J].自动化学报,2005,31(2):195-201. 被引量:3
  • 6VAPNIK V. The nature of statistical learning theory [ M]. New York: Springer, 1995.
  • 7LIN Chunfu, WAN Shengde. Fuzzy support vector ma- chine [ J ]. IEEE Trans. on Neural Networks, 2002, 13(2) :464 -471.
  • 8PEDRYCZ W. Shadowed sets: representing and pro- cessing fuzzy sets [ J ]. IEEE Trans on Systems, Man and Cybernetics-- Part B : Cybernetics, 1998, 28 ( 1 ) : 103 - 109.
  • 9PEDRYCZ W..From fuzzy sets to shadowed sets: inter- pretation and computing [ J ]. International Journal of In- telligence System, 2009, 24 ( 1 ) :48 - 61.
  • 10LEE Y J, MANGASARIAN 0 L. RSVM: reduced sup- port vector machines[ R]. Wiscosin: University of Wis- consin, 2000. Chicago, 2001.

二级参考文献49

  • 1谭明皓,柴天佑.基于案例推理的层流冷却过程建模[J].控制理论与应用,2005,22(2):248-253. 被引量:24
  • 2张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 3严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制[J].自动化学报,2006,32(4):636-640. 被引量:20
  • 4Lu Chen, Shi Bing-Xue. Design of a modified PWM VLSI neural network. Journal of Tsinghua University (Science and Technology), 2001, 41(1): 115~118.
  • 5Lu Chen. Condition monitoring and fault diagnosis of main bearing of I.C.E. based on noise analysis [dissertation]. Dalian: Dalian University of Technology, 2002, 70~81.
  • 6Murray A, Tarassenko L. Analogue neural VLSI pulse stream approach. Beijing: Publishing House of Electronics Industry, 1997, 22~60.
  • 7Bor J C, Wu C Y. Realization of the CMOS pulse width modulation neural network with on-chip learning.IEEE Transactions on Circuits and System-Ⅱ, 1998, 45(1): 96~107.
  • 8Haycock R J, York T A. Hardware implementation of a pulse-stream neural network. IEE Proc-Circuits Devices Syst, 1998, 145(3): 141~147.
  • 9Morie T, Funakoshi J, Nagata M. An analog-digital merged neural circuit using pulse width modulation technique. IEICE Transactions Fundamentals, 1999, E82~A(2): 356~363.
  • 10Lu Chun, SHI Bing-Xue. CMOS PWM VLSI implementation of neural network. In Proceedings of the International Joint Conference on Neural Networks (IJCNN'2000). Washington DC: IEEE USA, 2000, 21(3):485~488.

共引文献234

同被引文献57

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1240
  • 3刘锋,袁学海.模糊数直觉模糊集[J].模糊系统与数学,2007,21(1):88-91. 被引量:84
  • 4方原柏.电子皮带秤[M].北京:冶金工业出版社,2008.
  • 5袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35. 被引量:88
  • 6KHEDIRI I B, WEIHS C, LIMAM M. Kernel k-means clustering based local support vector domain description fault detection of muhimodal processes [ J ]. Expert Systems with Applications, 2012, 39(2) : 2166-2171.
  • 7ALAEI H K, SALAHSHOOR K, ALAEI H K, et al. A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis [ J ]. Soft Comput, 2013, 17(3) :345-362.
  • 8HINNEBURG A, KEIM D A. A general approach to clustering in large databases with noise [ J ]. Knowledge and Information Systems, 2003 (5) : 387-415.
  • 9HINNEBURG A, GABRIEL H H. DENCLUE 2.0: Fast clustering based on kernel density estimation [ J ]. Lecture Notes in Computer Science, 2007, 4723 : 70-80.
  • 10LIU Zhiwen, CAO Hongrui, CHEN Xuefeng, et al. Multi- fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings[J]. Neurocomputing, 2013, 99: 399-410.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部