期刊文献+

一些图的完美匹配多面体的维数 被引量:1

Dimension of Perfect Matching Polytope of Some Graphs
下载PDF
导出
摘要 设 G为一个简单图 .G的一条边为容许边 ,如果它属于 G的某个完善匹配 .一个具有完美匹配的图 G是基本的 ,如果由它的容许边所导出的子图是连通的 .G是双因子临界的 ,如果 G至少包含一条边且对 G中任意的两个不同的顶点 x与 y,G- x- y均有完美匹配 .一个双因子临界图是一个砖块 ,如果它是 3-连通的 .称 G是顶点可传递的 ,如果其自同构群是顶点传递的 .G的完美匹配多面体记作 PM(G) .得到以下结果 :(a)设 G是一个连通的顶点可传递图 .如果 |V(G) |为偶数 ,则 G或者是一个基本的二部图 ,或者是一个砖块 .(b)设 G是一个连通的顶点可传递图 .如果 |V(G) |为偶数 ,则当 G是二部图时 ,dim PM(G) =|E(G) |- |V(G) |+1;当 G是一个砖块时 ,dim PM(G) =|E(G) |- |V(G) Let G be a simple graph. A line of graph G is allowed if it lies in some perfect matching of G . A graph G with a perfect matching is elementary if its allowed lines form a connected subgraph. G is bicritical if G contains a line and G-x-y has a perfect matching for every pair of distinct points x and y in G . A bicritical graph is a brick if it is 3 connected. G is called point transitive if it has a point transitive automorphism group. Let PM(G) denote the perfect matching polytope of the graph G . The following results are obtained: (a) Let G be a connected point transitive graph. If |V(G)| is even, then G is either an elementary bipartite graph or a brick. (b) Let G be a connected point transitive graph. If |V(G)| is even, then: when G is bipartite, dim PM(G)= |E(G)| -|V(G)|+1; when G is a brick, dim PM(G)= |E(G)|-|V(G)| .
出处 《郑州大学学报(自然科学版)》 CAS 2000年第2期1-3,共3页 Journal of Zhengzhou University (Natural Science)
关键词 多面体 顶点可传递图 完美匹配 维数 polytope point transitive brick
  • 相关文献

参考文献5

  • 1Lovasz L, Plummer M D. Marching Theory[M]. New York: Elsevier Science Publishing Company, Inc, 1986.
  • 2Plummer M D. Extending matchings in graphs, A survey[J]. Discrete Mathematics, 1994,127:277-292.
  • 3Yahya Ould Hamidoune. The minimum order of a Cayley graph with given degree and diameter [J]. Networks, 1993,23:283-287.
  • 4Yahya Ould Hamidoune. On. the connectivity of Cayley digraphs[J]. Europ J Combinatorics ,1984,(5):309-312.
  • 5Bondy J A, Murty U S R. Graph Theory with Applications[M]. The Macmillan Press LTD, 1976.

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部