期刊文献+

一种构造系数的自相关函数特征提取算法 被引量:5

A Feature Extraction Algorithm Based on Constructed Weighted Coefficient and Autocorrelation Function
下载PDF
导出
摘要 由于遥感影像具有数据量大、维数高和不确定性等特点,遥感影像的分类已经远远超出了人的分析和解译能力,为了达到理想的分类效果,提取深层次空间结构信息的需求越来越强烈。根据各类样本的均值和方差构造加权系数,对样本的自相关函数进行加权,提出1种新的自相关函数特征提取算法,以改善样本不足造成的分类精度较低问题;采用支持向量机方法,对新的样本数据进行训练与分类性能研究。实验结果表明分类精度提高,在一定程度上能够反映遥感影像的深层次空间结构信息,验证了此算法的有效性与可行性。 Remote sensing image features huge data, high dimension and uncertainty. And remote sensing image classification has gone beyond our analysis and interpretation ability. To reach ideal classification results, demand of deep spatial feature extraction is extremely urgent. Based on the idea of SVM, a new approach based on autocorrelation feature extraction and constructed weighted coefficient has been proposed in this paper. New sample is created by combining autocorrelation function feature and sample feature. This approach analyzes classification result based on new sample. Experiment results show that the classification accuracy is increased and spatial feature of remote sensing image can be reflected to some extent. This verifies the effectiveness and feasibility of this approach.
出处 《无线电通信技术》 2012年第5期56-59,共4页 Radio Communications Technology
关键词 支持向量机 遥感影像 自相关函数 分类 Support Vector Machine ( SVM ) remote sensing image autocorrelation function classification
  • 相关文献

参考文献6

  • 1VAPNIK V. The Nature of Statistical Learning Theory [ M ]. New York : Springer, 1995:43 - 49.
  • 2BURGES C J C. A Tutorial on Support Vector Machinesfor Pattern Recognition [J]. Data Mining and Knowledge Discovery, 1998,2 ( 1 ) : 121- 167.
  • 3MARTIN B, LEWIS H G,GUNN S R. Support Vector Ma- chines For Spectral Unmixing [ C ]// IGRASS' 99,1999, 2:1363 - 1365.
  • 4HERMES L,FRIEAUFF D, PUZICHA Jan, et al. Support Vector Machines for Land Usage Classification in Landsat TM Imagery [ C ]//Proc. of the IEEE International Geo- science and Remote Sensing Symposium, 1999, 1: 348 - 350.
  • 5RANDEN T,JOHN H H. Filtering for Texture Classifica- tion : A Comparative Study [ C ] //IEEE Trans. on Pattern Analysis and Machine Intelligence, 1999, 21 ( 4 ) : 291 -311.
  • 6BURGES C J C. A Tutorial on Support Vector Machines for Pattern Recognition [ J]. Data Mining and Dnowledge Discover, 1998,2 (2) : 106 - 112.

同被引文献45

  • 1梅丹丹,张晓祥,余其鹏,徐盼.利用辅助数据的荒漠区高分辨率遥感分类研究[J].遥感信息,2013,28(5):77-84. 被引量:4
  • 2杜培军,林卉,孙敦新.基于支持向量机的高光谱遥感分类进展[J].测绘通报,2006(12):37-40. 被引量:34
  • 3ZHOU W,ZHOU Y,JIANG X,et al.Detecting repackaged smartphone applications in third-party Android marketplaces[C] ∥Proceedings of the Second ACM Conference on Data and Application Security and Privacy.New York,USA:ACM,2012:317-326.
  • 4BORJA S,IGOR S,CARLOS L,et al.PUMA:Permission Usage to Detect Malware in Android[C] ∥International Jiont Conference CISIS’12-ICEUTE’12-SOCO’12 Special Sessions.Berlin,Germany:Springer,2012:289-298.
  • 5BURGUERA I,ZURUTUZA U,NADJM-TEHRA-NI S.Crowdroid:Behavior-based Malware Detection System for Andoird[C] ∥Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.New York,USA:ACM,2011:15-26.
  • 6SHABTAI A,ELOVICI Y.Applying Behavioral Detection on Android-based Devices[C] ∥Mobile Wireless Middleware,Operating Systems,and Applications.Springer Berlin Heidelberg,2010:235-249.
  • 7SHABTAI A,KANONOV U,ELOVICI Y,et al.'Andromaly':a Behavioral Malware Detection Framework for Android Devices[J].Journal of Intelligent Information Systems,2012,38(1):161-190.
  • 8WU Dong-Jie,MAO Ching-hao,WEI Te-en,et al.DroidMat:Android Malware Detection through Manifest and API Calls Tracing[C] ∥2012 Seventh Asia joint conference on information security,2012:62-69.
  • 9LANCASTER H O,SENETA E.Chi-Square Distribution[M].USA:John Wiley&Sons,Ltd,1969.
  • 10VAPNIK V N. Estimation of Dependencies Based on Em- pirical Data[ M ].Berlin : Springer - Verlag, 1982.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部