期刊文献+

深空、自由空间、非可视散射和水下激光光子通信 被引量:9

Overview of the photonic communication in deep space, free space and underwater communication
下载PDF
导出
摘要 激光光子通信是国际通信前沿研究领域的一个重要的研究方向。近年来激光光子通信技术被广泛地应用于深空通信,卫星与卫星激光通信,自由空间通信,非可视散射通信和水下通信等领域内。首先,由于自由空间激光光子通信系统的高下传速率优势,使其成为未来深空通信重要的研究方向。其次,基于自由空间和非可视散射光子通信方式的分布式传感网络逐渐从实研室走向实际应用。在农业土壤质量检测、地震灾害事件、结构件压力、医疗参数数据、污染物输运和军事应用领域具有广泛的应用价值。另外,水下光子通信技术能够满足与水下观测和海底检测以及钻井平台相关的研究和检测所需要的高速率通信需求。总之,由于激光和光子探测技术的独特优势,光子通信技术研究兴趣日益强劲,将在深空、自由空间和水下通信中被广泛的应用和深入研究。 The photonic communication is an important and hotpots frontier field.In recent years,the photonic communication technology can be widely used in deep space and inter satellite photonic communication,free space and non-line-of-sight photonic communication and underwater photonic communication.Firstly,interest in high-data-rate free-space optical(FSO) laser communication systems has grown significantly in recent years because of the advantages offered by FSO systems over radio frequency(RF) systems.Secondly,Distributed sensor networks are emerging from research laboratories to field studies in applications such as monitoring soil quality,seismic events,stresses in structures,medical parameters,and contaminant transport,and in military applications.In additional,underwater photonic communication can provide the high data rate required to investigate and monitor underwater observation,subsea monitoring systems and facilities.In a word,because of the unique advantage of the laser and photon detector,the emerging interesting photonic communication technology can be deep investigated and widely applied in the deep space,atmosphere and underwater communication.
出处 《红外与激光工程》 EI CSCD 北大核心 2012年第9期2424-2431,共8页 Infrared and Laser Engineering
基金 国家自然科学青年科学基金(40804032)
关键词 光子通信 深空通信 非可视散射通信 水下通信 photonic communication deep space communication non-line-of-sight communication underwater communication
  • 相关文献

参考文献52

  • 1Harold Hemmati. Deep Space Optical Communications[M]. California: California Institute of Technology, 2005.
  • 2WasiuO Popoola, Zabih Ghassemlooy. BPSKsubcarrier intensity modulated free-space optical communications in atmosphericturbulence[J]. Journal of Lightwave Technology, 2009, 27 ( 8 ): 967-973.
  • 3Debbie Kedar, Shlomi Arnon. Non-line-of-sight optical wireless sensor network operating in multiscattering channel [J]. Applied Optics, 2006, 45(33): 8454-8461.
  • 4Shlomi Arnon. Underwater optical wireless communication Network[J]. Optical Engineering, 2010, 49(1): 1-6.
  • 5Boroson Don M, Chen Chienchung, Edwards Bernard. Overview of the mars laser communications demonstration project [J]. IEEE Lasers & Electro-Optics Society Newsletter, 2005, 19(5): 8-11.
  • 6Scozzafava J J, Boroson D M, Bondurant R S, et al. The mars lasercom terminal [J]. IEEE Lasers & Electro-Optics Society Newsletter, 2005, 19(5): 12-14.
  • 7W Thomas Roberts, Malcolm W Wright. Deep-space optical terminals (DOT) ground laser transmitter (GLT) trades and conceptual point design[R]. IPN Progress Report, 2010: 42-183.
  • 8David O Caplan. Laser communication transmitter and receiver design[R]. J Opt Fiber Commun Rep, 2007, 4: 225-362.
  • 9Lawrence M Candell. LDES: a prototype array optical receiver for the mars laser communications demonstration project [J]. IEEE Lasers & Electro.Optics Soeiefy Newsletter, 2005, 19(5): 15-16.
  • 10Neal W Spellmeyer, David O Caplan, Mark L Stevens. Design for a S-Watt PPM transmitter for the mars laser communications demonstration [J]. IEEE Lasers & Electro- Oatics Society Newsletter. 2005. 19(5): 22-23.

二级参考文献23

共引文献50

同被引文献63

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部