期刊文献+

一种面向布尔时间序列的关联规则挖掘算法 被引量:4

Algorithm of mining association rules for Binary time series
原文传递
导出
摘要 布尔时间序列中的关联规则挖掘较难处理,因为多数关联规则仅挖掘不同事务共同出现的规则,难以体现同一事件在不同时间内动态变化间的关联性.鉴于此,提出一种新的关联规则挖掘框架,利用常量化表示布尔数据的时间属性,结合聚类算法和关联分析,提高规则的支持度,从而解决布尔时间序列数据在关联规则挖掘中的时间值表示问题,并使用多种指标评价规则与传统算法比较.在真实的中风病预后好转数据预测中验证了所提出算法的有效性. Association analysis for Binary time series is a difficult problem, because most of association rules lay emphasis on the relation among the items, but ignore the temporal correlation in the transaction database. Therefore, a new improved algorithm of mining association rules for Binary time series is presented to make use of both the relationship among the items and the temporality of association. By using the proposed algorithm, the Binary data is converted to common numerical value for representing the time-value implicitly, then clustering algorithm is combined with the association analysis, which improves the supports of most association rules. Several indicators are used to evaluate the results from the proposed algorithm. The experimental results on the prognosis dataset of stroke show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2012年第10期1447-1451,1458,共6页 Control and Decision
基金 国家重大基础研究计划项目(2003CB517102)
关键词 布尔时间序列 关联规则 聚类 预后 Binary time series association rules clustering prognosis
  • 相关文献

参考文献6

二级参考文献62

  • 1荣冈,刘进锋,顾海杰.数据库中动态关联规则的挖掘[J].控制理论与应用,2007,24(1):127-131. 被引量:24
  • 2胡运发.互关联后继树—一种新型全文数据库数学模型.技术报告,CIT-02—03[R].计算机与信息技术系,复旦大学,2002..
  • 3Liu Jin-feng, Rong Gang. Mining dynamic association rules in databases [ C ]. Proc of Int Conf on Computational Intelligence and Security. Xi'an, 2005: 688-695.
  • 4Wai-Ho Au, Keith C C Chan. Mining changes in association rules: A fuzzy approach[J]. Fuzzy Sets and Systems, 2005, 149(1): 87-104.
  • 5Dong G Z, Li J Y. Mining border descriptions of emerging patterns from dataset pairs [J]. Knowledge and Information Systems, 2005, 8(2) : 178-202.
  • 6Vreeken J, Van Leeuwen M, Siebes A. Characterising the difference[C]. Proc of 13th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. San Jose, 2007: 765-774.
  • 7Van Leeuwen M, Siebes A. STREAMKRIMP: Detecting change in data streams[C]. Proc of European Conf on Machine Learning and Principles and Practices of Knowledge Discovery in Data. Antwerp, 2008: 672- 687.
  • 8Wai-Ho Au, Keith C C Chan. An evolutionary approach for discovering changing patterns in historical data[C]. Proc of 11th IEEE Int Conf on Fuzzy Systems. Honolulu, 2002: 890-895.
  • 9Deepa Shenoy P, Srinivasa K G, Venugopal K R. Dynamic association rule mining using genetic algorithms [J]. Intelligent Data Analysis, 2005, 5(9): 439-453.
  • 10韩家炜 Michelin K.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..

共引文献386

同被引文献18

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部