摘要
针对经典弱化缓冲算子的固定结构问题,将可变参数引入弱化缓冲算子,构造若干实用的幂弱化缓冲算子,并分析可变参数与幂弱化缓冲算子作用强度之间的关系.通过调整可变参数的数值,实现对算子作用强度的有效控制.结果表明,经典弱化缓冲算子是幂弱化缓冲算子的特殊情形,幂弱化缓冲算子在控制作用强度方面的有效性明显优于传统缓冲算子.最后,通过实例验证了幂弱化缓冲算子的有效性与优越性.
For the problem of the fixed structure of classic weaken buffer operators, this paper introduces variable parameters into weaken buffer operator, constructs a number of practical power weaken buffer operators and analyzes the relationship between the intensity and variable parameters in order to effectively control the intensity of the weaken buffer operators. The results show that the classical weaken buffer operators are special cases of power weaken buffer operators which are superior to the traditional operators in the aspect of the controlling the intensity. Finally, an example of a product sales show the effectiveness and superiority of the power weaken buffer operators.
出处
《控制与决策》
EI
CSCD
北大核心
2012年第10期1482-1488,共7页
Control and Decision
基金
国家自然科学基金项目(71071077
71101132)
全国教育科学"十一五"规划青年课题(EIA100402)
关键词
灰色系统
幂弱化缓冲算子
可变参数
预测
grey system, power weaken buffer operator, variable parameters, forecasting