期刊文献+

Cubature卡尔曼滤波-卡尔曼滤波算法 被引量:13

Cubature Kalman filter-Kalman filter algorithm
原文传递
导出
摘要 针对条件线性高斯状态空间模型,提出cubature卡尔曼滤波-卡尔曼滤波算法(CKF-KF),分别应用CKF和KF估计模型中的非线性和线性状态.该算法对非线性与线性状态均进行cubature采样,并将两种样本通过线性方程和量测方程进行传播,以获得非线性状态估计.机动目标跟踪仿真结果表明,CKF-KF的估计精度比Rao-Blackwellized粒子滤波器(RBPF)略低,但算法运行时间不到其1%;与无迹卡尔曼滤波器(UKF-KF)相比,估计精度相当,但算法运行时间降低了22%,有效地提高了实时性. A filtering algorithm, cubature Kalman filter-Kalman(CKF-KF) filter, is proposed for conditionally linear Ganssian state model, which respectively employs CKF and KF to estimate nonlinear state and linear state in the model. The above states are carried out cubature sampling, which are propagated through linear and observation equations to estimate nonlinear state. The maneuvering target tracking simulation results show that, compared to the Rao-Blackwellized particle filter(RBPF), the algorithm running time of CKF-KF is less than 1% of that with a slightly lower filtering performance loss, and the estimation accuracy of CKF-KF coincides with that of UKF-KF, whereas the algorithm running time reduces by 22% and effectively improves real-time.
作者 孙枫 唐李军
出处 《控制与决策》 EI CSCD 北大核心 2012年第10期1561-1565,共5页 Control and Decision
基金 国家自然科学基金项目(60775001 60834005)
关键词 条件线性高斯模型 cubature卡尔曼滤波-卡尔曼滤波 无迹卡尔曼滤波器 实时性 conditionally linear Gaussian model, cubature Kalman filter-Kalman filter~ UKF-KF real-time
  • 相关文献

参考文献13

  • 1Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3): 197-208.
  • 2Bar-Shalom Y, Li X R. Multitarget-multisensor tracking principles and techniques[M]. New Orleans: University of New Orleans, 1995: 40-60.
  • 3Mustiere E Bolic M, Bouchard M. Rao-Blackwellised particle filters: Examples of applications[C]. Canadian Conf on Electrical and Computer Engineering. Ottawa, 2006:1196-1200.
  • 4Matti Vihola. Rao-Blackwellised particle filtering in random set multitarget tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(2): 689-705.
  • 5Nando de Freitas. Rao-Blackwellised particle filtering for fault diagnosis[C]. Proc of IEEE Aerospace Conf. Montana, 2002, 4: 1767-1772.
  • 6Arnaud Doucet, Neil J Gordon, Vikram Krishnamurthy. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Trans on Signal Processing, 2001, 49(3): 613-624.
  • 7Mustiere F, Bolic M, Bouchard M. A modified Rao- Blackwellised particle filter[C]. IEEE Int Conf on Acoustics, Speech and Signal Processing. Toulouse, 2006, 3: 21-24.
  • 8尹建君,张建秋,林青.Unscented卡尔曼滤波-卡尔曼滤波算法[J].系统工程与电子技术,2008,30(4):617-620. 被引量:19
  • 9Julier S, Uhlmann J, Durrant-Whyte H F. Anew method for the nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482.
  • 10Arasaratnam I, Haykin S. Cubature Kalman filter[J]. IEEE Trans on Automatic Control, 2009, 54(6): 1254-1269.

二级参考文献10

  • 1Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000 (10) : 197 - 208.
  • 2Doucet A. On sequential simulation-based methods for Bayesian filtering[R]. Technical report CUED/F-INFENG/TR 310, Cambridge University Engineering Department, 1998.
  • 3Mustiere F, Bolic M, Bouchard M. Rao-Blackwellised particle filters: examples of applications[C]//IEEE Canadian Conference on Electrical and Computer Engineering ( CCECE).Ottawa, Canada, 2006.
  • 4Doucet A, Freitas N, Gordon N J. Sequential Monte Carlo in practice[M]. New York : Springer, 2001.
  • 5Freitas N. Rao-blackwellised particle filtering for fault diagnosis[C]// IEEE Aerospace Conference Proceedings, 2002,4 : 1767 - 1772.
  • 6Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems[C]//Proc. of AeroSense : The l lth International Symposium on Aerospace/Defence Sensing, Simulation and Controls, SPIE, Orlando, Florida, USA, 1997:182- 193.
  • 7Merwe R, Doucet A, Freitas N, Wan E. The unscented particle filter[R]. Technicalreport CUED/F-INFENG/TR 380, Cambridge University Engineering Department, 2000.
  • 8Morelande M R, Ristic B. Reduced sigma point filtering for partially linear models[C]//ICASSP, 2006 : 37 - 40.
  • 9Mustiere F, Bolic M, Bouchard M. A modified Rao-blackwellised particle filter[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006:21 - 24.
  • 10Steven M K.统计信号处理基础-估计与检测理论[M].罗鹏飞,张文明,刘忠,译.北京:电子工业出版社,2003:477-478.

共引文献18

同被引文献94

引证文献13

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部