摘要
三维物体的识别是有重要应用意义的课题 ,神经网络模型是解决该复杂问题的一个途径 .作者将神经网络模型表达为矩阵形式 ,提出异联想矩阵形式的 Hopfield模型 ,从而提出了能较好地解决这一问题的新方案 .与传统Hopfield模型相比较 ,该模型对三维物体的识别有较好的识别率 。
Recognition of three dimensional object is always an interesting subject. Neural network model with its associative capability is an important approach to solving such complex problem. This paper puts forward a heteroassociative Hopfield model in matrix form, which can deal with recognition of three dimensional object with a much smaller interconnection matrix than the original Hopfield model. Thus, this result should be interesting for the development of neural newtork models and for practical applications.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
2000年第3期277-279,共3页
Journal of Shanghai University:Natural Science Edition