摘要
为了对激光冲击强化过程进行故障诊断,提出了一种基于小波包和BP神经网络的声学诊断方法,利用小波包提取出了激光冲击强化过程中所采集声波信号在某些频段的能量作为信号特征,并通过神经网络进行训练,能够较好地识别出模拟的故障情况,对于进一步加强声学诊断方法的研究具有重要意义。
In order to carry out fault diagnosis in the laser shock processing, a plasma acoustic wave diagnosis method based on wavelet packet and BP neural networks is proposed. The energy distribution in some frequency range of the acoustic wave extracted by the wavelet packet is taken as the signal feature, and the different fault modes are classified and recognized after the neural networks training. The method is of great importance to further study on the plasma a- coustic wave diagnosis method.
出处
《激光与红外》
CAS
CSCD
北大核心
2012年第10期1107-1110,共4页
Laser & Infrared
关键词
激光冲击强化
故障诊断
小波包
BP神经网络
laser shock processing
fault diagnosis
wavelet packet
BP neural networks