期刊文献+

基于SVD的无线多媒体传感器网络图像压缩机制 被引量:7

Image compression scheme in wireless multimedia sensor networks based on SVD
下载PDF
导出
摘要 针对无线多媒体传感器网络图像压缩问题,从节点协作特性出发,提出了一种基于奇异值分解的图像压缩传输方案.首先研究了基于SVD的分块图像自适应压缩算法,以平衡网络能耗为目标,将相机节点和普通节点按照角色分工,协作完成图像采集、压缩和传输工作.相机节点负责采集图像信息,然后将图像分块发送给簇内普通节点;簇内普通节点对分块图像进行自适应压缩并将数据发送给簇头节点;簇头节点再将压缩后的数据转发至基站.仿真结果表明,提出的网络拓扑方案和图像压缩传输机制极大地缓解了图像采集节点的能耗压力,有效地平衡了网络的节点能耗.与JPEG2000协同图像压缩方案相比,基于SVD的图像处理方案的网络总能耗更少;且后者能够有效地对图像进行压缩传输,平衡网络能耗,延长整个网络的生命周期. Aiming at the issue of image compression in wireless multimedia sensor networks, starting from the node collaboration features, an image compression and transmission scheme based on singu- lar value decomposition (SVD) is proposed. First, an adaptive blocking image compression algo- rithm based on SVD is studied. To balance the energy consumption of the network, according to the roles division, camera nodes and common nodes are cooperated to accomplish the workload of image acquisition, compression and transmission. Camera nodes gather images and send blocking images to the common nodes in cluster. Common nodes adaptively compress the partitioned images and send the compressed data to the cluster head node. Then, the cluster head node sends the compressed im- age data to the station. Simulation results show that the energy consumption pressure of camera nodes is greatly released by the proposed image compression and network topology scheme, and the network energy consumption is effectively balanced. Compared with the JPEG2000 collaborative im- age compression scheme, the total network energy consumption of the proposed cooperative image processing scheme based on SVD is less. In addition, the proposed scheme can effectively compress and transmit images, balance the energy consumption of network and prolong the life of the whole network.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期814-819,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60973139 61003236 61170065 61171053) 教育部博士点基金资助项目(20103223120007 20113223110002) 江苏省自然科学基金资助项目(BK2011755) 江苏省科技支撑计划资助项目(BE2010197 BE2010198) 江苏省普通高校自然科学研究计划资助项目(11KJA520001 11KJB520016) 江苏省普通高校研究生科研创新计划资助项目(CX10B_200Z CXZZ12_0480 CXZZ12_0481)
关键词 无线多媒体传感器网络 图像压缩 奇异值分解 节点协作 wireless multimedia sensor networks image compression singular value decomposition node collaboration
  • 相关文献

参考文献12

  • 1Akyildiz I F, Melodia T, Chowdhury K R. A survey on wireless multimedia sensor networks [ J ]. Computer Networks, 2007, 51(4): 921-960.
  • 2罗武胜,翟永平,鲁琴.无线多媒体传感器网络研究[J].电子与信息学报,2008,30(6):1511-1516. 被引量:52
  • 3Wu H M, Abouzeid A A. Energy-efficient distributed image compression in resource-constrained multihop wireless networks [ J ]. Computer Communications, 2005, 28(14) : 1658 - 1668.
  • 4Lu Q, Luo W S, Wang J D, et al. Low-complexity and energy efficient image compression scheme for wireless sensor networks [ J ]. Computer Networks, 2008, 52 (13): 2594-2603.
  • 5Lu Q, Luo W S, Ye X B. Collaborative in-network processing of LT based image compression algorithm in WMSNs [ C ]//Proceeding of the 1st International Workshop on Education Technology and Computer Sci- ence. Wuhan, China, 2009: 839- 843.
  • 6鲁琴,罗武胜,胡冰.无线传感网基于邻居簇的JPEG2000多节点协同实现[J].光学精密工程,2010,18(1):240-247. 被引量:9
  • 7Huu P N, Tran-Quang V, Miyoshi T. Low-complexity and energy-efficient algorithms on image compression for wireless sensor networks [ J ]. IEICE Transactions on Communications, 2010, E93-B (12) : 3438 - 3447.
  • 8Andrews H C, Patterson C L. Singular value decompo- sition (SVD) image coding [ J ]. IEEE Transactions on Communications, 1976, 24 (4) : 425 - 432.
  • 9Ranade A, Mahabalaro S S, Kale S. A variation on SVD based image compression [ J ]. Image and Vision Computing, 2007, 25(6) : 771 -777.
  • 10Golub G H, Reinsch C. Singular value decomposition and least squares solutions [J]. Numerische Mathema- tik, 1970, 14(5) : 403 -420.

二级参考文献41

  • 1马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 2MARGI C B, PETKOV V, OBRACZKA K, et al.. Characterizing energy consumption in a visual sensor network testbed [C]. Proceedings of the 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006:332-339.
  • 3PRADHAN S S, KUSUMA J, RAMCHANDRAN K. Distributed compression in a dense microsensor network [J]. IEEE Signal Processing Magazine, 2002,3:51-60.
  • 4WAGNER R, NOWAK R, BARANIUK R. Distributed image compression for sensor networks using correspondence analysis and super-resolution[C]. Proceedings of the 2003 International Conference on Image Processing, 2003 : 597- 600.
  • 5WU H M, ABOUZEID A A. Power aware image transmission in energy constrained wireless networks[C]. Proceedings of the 9th International Symposium on Computers and Communications, 2004 : 202-207.
  • 6HEINZELMAN W B. Application-specific protocol architectures for wireless networks [D]. Cambridge:Massachusetts Institute of Technology, 2000.
  • 7WANG A, CHANDRAKASAN A. Energy efficient DSPs for wireless sensor networks [J]. IEEE Signal Processing Magazine, 2002,6 : 68- 78.
  • 8ZUNIGA M, KRISHNAMACHARI B. Analyzing the transitional region in low power wireless links [C]. Proceedings of the 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004: 517-526.
  • 9HEINZELMAN W B, CHANDRAKASAN A P, BALAKRISHNAN H. An application-specific protocol architecture for wireless microsensor net works [J]. IEEE Transactions on Wireless Communications, 2002,10:660-670.
  • 10Chang C K and Huang J. Video surveillance for hazardous conditions using sensor networks. Proc. of the 2004 IEEE Int'l Conf. on Networking, Sensing & Control. New York, 2004: 1008-1013.

共引文献57

同被引文献62

  • 1陈海鹏,董明.高分辨率遥感影像在测绘生产中的应用潜力研究[J].测绘通报,2005(3):11-12. 被引量:29
  • 2董梅,高康林.矩阵奇异值分解和Arnold置乱技术在图像隐藏中的应用[J].山东大学学报(理学版),2005,40(3):71-75. 被引量:11
  • 3王向阳,杨红颖,侯丽敏.一种用于版权保护的混合域数字图像水印算法[J].测绘学报,2006,35(3):240-244. 被引量:7
  • 4孙力娟,郭剑,陆凯,王汝传.基于量子遗传算法的传感器网络拓扑结构控制[J].通信学报,2006,27(12):1-5. 被引量:3
  • 5Fridrich J,Goljan M.Robust hash functions for digital watermarking[C] //Proceedings of IEEE International Conference on Information Technology:Coding and Computing.Las Vegas,NV,USA,2000:178-183.
  • 6Lin C Y,Chang S F.A robust image authentication method distinguishing JPEG compression from malicious manipulation[J].IEEE Transactions on Circuits and Systems for Video Technology,2001,11(2):153-168.
  • 7Monga V,Evans B L.Perceptual image hashing via feature points:performance evaluation and tradeoffs[J].IEEE Transactions on Image Processing,2006,15(11):3452-3465.
  • 8Kozat S S,Mihcak K,Venkatesan R.Robust perceptual image hashing via matrix invariants[C] //Proceedings of IEEE Conference on Image Processing.Singapore,2004:3443-3446.
  • 9Tang Z,Zhang X,Dai X,et al.Robust image hash function using local color features[J].AEU-International Journal of Electronics and Communications,2013,67(8):717-722.
  • 10Zhao Y,Wang S,Zhang X,et al.Robust hashing for image authentication using Zernike moments and local features[J].IEEE Transactions on Information Forensics and Security,2013,8(1):55-63.

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部