期刊文献+

一种多策略要素的数据访问调度算法

Multi-policy element scheduling algorithm for data access
下载PDF
导出
摘要 考虑到任务的重要性、截止时间和资源分布等因素,设计了一种多策略要素的调度算法(MPES),以解决不完全独立的多源分布式气象水文数据库的访问控制问题.该算法为不同优先级的任务设定不同调度窗口,并对节点的安全级别、内容属性和负荷情况进行匹配判定,选择最佳服务节点,以优化系统公平性和整体效率.MPES算法根据队列优先级和可利用的服务资源,动态计算和调整调度窗口;优先级越高的队列,调度窗口越大,意味着可被服务的任务越多.在每个队列调度窗口时间内的任务被轮流执行.对于同一队列中的任务,根据最小松弛度优先调度策略,决定其进入调度窗口的次序,保证接近截止期的任务先执行.仿真试验结果表明,在不同的网络负荷下,MPES算法得到的分布式数据库访问任务的服务效率和公平性较MCT算法和Min-Min算法均有明显提高,尤其是高负荷情况下,总服务时间减少了11.4%~12.3%. Considering task' s essentiality, deadline and resource distribution, a multi-policy element scheduling (MPES) algorithm is designed in order to solve the access control problem of incomplete independent multi-source distributed meteorological and hydrological database. In this algorithm, different scheduling windows are assigned for the tasks with different priorities, and the secure lever, data attribute and load situation are matched to select the best service node, which can optimize the system' s fairness and efficiency. According to the priority of every queue and available service re- sources, the size of scheduling windows is dynamically computed and adjusted. The higher the prior- ity is, the bigger the window is, which means more tasks can be got service. The tasks entering the scheduling windows can be executed alternately. For the tasks in the same queue, the MLLF (modi- fied least laxity first) policy is taken to arrange the order of entering the scheduling window, which guarantees the task close to the certain deadline can be served first. The simulation results show that the service efficiency and fairness for the tasks of distributed database access obtained by the MPES algorithm are superior to those obtained by the MCT( minimum completion time) algorithm and the Min-Min algorithm under different network loads. Especially, the total service time decreases 11.4% to 12.3% under high loads.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期820-824,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61070174) 东南大学计算机网络和信息集成教育部重点试验室开放课题资助项目(K93-9-2010-03)
关键词 分布式数据库 任务调度 多策略要素 公平性 distributed database task scheduling multi-strategy element fairness
  • 相关文献

参考文献10

  • 1朱海,王宇平.多目标约束的网格任务安全调度模型及算法研究[J].电子与信息学报,2010,32(4):988-992. 被引量:5
  • 2Laplante P A. Real-time system design and analysis [M]. 3rd ed. London:Prentice Hall, 2004:147 -156.
  • 3Henderson J, Lemon O, Georgila K. Hybrid reinforce- ment/supervised learning of dialogue policies from fixed data sets [ J ]. Computational Linguistics, 2008,34 ( 4 ) : 487 -511.
  • 4杨忠明,秦勇,黄翰,蔡昭权,武玉刚.复杂网络的演化及其在Internet负载平衡中的应用研究[J].计算机工程与科学,2011,33(2):37-41. 被引量:3
  • 5Sulistio A, Poduval G, Buyya R, et al. On incorpora- ting differentiated levels of networks service into Grid- Sim[J ]. Future Generation Computer Systems, 2007, 23(4) :606-615.
  • 6Sulistio A, Cibej U, Venugopal S, et al. A toolkit for modelling and simulating data grids: an extension to GridSim [ J ]. Concurrency and Computation : Practice and Experience, 2008, 20(13) : 1591 - 1096.
  • 7Qureshi K, Rehman A, Manuel P. Enhanced GridSim architecture with load balancing[ J ]. The Journal of Su- percomputing, 2011,57 ( 3 ) :265 - 275.
  • 8Fidanova S. Simulated annealing for grid scheduling problem[ C ]//Proceedings of IEEE John Vincent Ata- nasoff 2006 International Symposium on Modern Compu- ting. Sofia, Bulgaria,2006:41 -45.
  • 9Chauhan S S, Joshi R C. A weighted mean time Min- Min Max-Min selective scheduling strategy for inde- pendent tasks on grid [ C ]//Proceedings of the 2nd IEEE International Advance Computing Conference. Pa- tiala, India,2010:4 - 9.
  • 10彭娜,王运松,聂思举,徐世英.我国民族地区城乡收入差异程度的实证分析[J].中央民族大学学报(自然科学版),2011,20(4):74-77. 被引量:3

二级参考文献24

  • 1张伟哲,方滨兴,胡铭曾,张宏莉.基于信任QoS增强的网格服务调度算法[J].计算机学报,2006,29(7):1157-1166. 被引量:51
  • 2张伟哲,胡铭曾,张宏莉,刘凯鹏.多QoS约束网格作业调度问题的多目标演化算法[J].计算机研究与发展,2006,43(11):1855-1862. 被引量:23
  • 3王海涛.中国城乡居民收入差距不断扩大的原因及其解决方策[J].东北大学学报(社会科学版),2007,9(4):308-314. 被引量:9
  • 4Chakrabarti A, Damodaran A, and Sengupta S. Grid computing security: A taxonomy[J]. IEEE Security & Privacy, 2008, 6(1): 44-51.
  • 5Song S S, Hwang Kai, and Kwok Yu-kwong. Risk-resilient heuristics and genetic algorithms for security-assured grid job scheduling [J]. IEEE Transactions on Computers, 2006, 55(6) 703-719.
  • 6Braun T D, Siegel H J, and Becj N. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems [J]. Journal of Parallel and Distributed Computing, 2001, 61(6): 810-837.
  • 7Ranaldo N and Zimeo E. Time and cost-driven scheduling of data parallel tasks in grid workflows[J]. IEEE Systems Journal, 2009, 3(1): 104-120.
  • 8Azzedin F and Maheswaran M. Integrating trust into grid resource management systems[C]. Proceedings of 2002 International Conference on Parallel Processing. Los Alamitos, Cal, USA: IEEE Computer Society Press, 2002: 47-54.
  • 9Zhu H and Wang Y P. Security-Driven Task Scheduling Based on Evolutionary Algorithm[C]. Proceeding of the Computational Intelligence and Security 2008, IEEE Press, 2008: 451-456.
  • 10Li B B and Wang L. A hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(3): 576-591.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部